0l DIBITAL RESEARCH

': .-Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

AN INTRODUCTION TO CP/M FEATURES AND FAC]LITIES

COPYRIGHT (c) 1976, 1977, 1978

DIGITAL RESEARCH

REVISION OF JANUARY 1978

Copyright (e¢) 1976, 1978 by Digital Research. All rights
reserved. No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any
form or by any means, electronic, mechanical, magnetic,
optical, chemical, manual or otherwise, without the prior
written permission of Digital Research, Post Office Box 579,
Pacific Grove, California 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any
particular purpose. Further, Digital Research reserves the
right to revise this publication and to make changes from
time to time in the content hereof without obligation of
Digital Research to notify any person of such revision or
changes.

Section

1.
2,

Se

7.

Table of Contents

IN’Imch‘Im 0800000000000 0CERRRRNINNNNINIOGOANIBGBROIOSIANONDNGBONS

EUMIML mSCRIPrIm m CP/M [EEEERENFENNEEER NN R NN N NN]
2.1, General Command Structlre ..eccecesssccecscsscsss
2.2. File References [EENRNFRENNEERENENENNERNNNRNNNNNNRNRN NN]

mIm{ING DISm @ 0800000000000V BSRSLILIIBNBIGOIOIOORSIOSOGTBOIOSLONNSNS

TI‘E mm w BUILT;IN mm 00000000 BIBLNLBESBLELNLSS
401. Em afn cr 0 00008000 NNNOLINLNBLIIBSAIOGIOLIOSIOSIOSIAORNBSISTOROIORRNDS
. Dm afn cr 9000000000080 000RGNNIBLEIOIOGIBIOIBSIOTLETORONIIIOSNDS
Rm ufnl=uﬁ12 cr S0 00PN NNSNINNOSSISINBSOLOLIBTIBOLONBLONLIINNDNDS
SAVE n Uﬁl cr 0800000000080 00000000000000000008
. TYm um cr 0 888880080000 08000008008008088008008080

K
Ndwh
.

LmE mITIm MD OUTPW mmL.....................

TWSIM mm 0000000 SIEGNLONIOIONONOGIOIOSIOSIOLIOTAOLTOIOIBNSIOBLBOSOLONNNNDS

6.1. Sm‘ cr 00 000000 RBNNRSIARIGOICGOLIOICGOIOIOSIOSIOROIOGTOIOONBONLNONONDS
Am Uﬁl cr 0080080 000GGRINIRNGOIOIOGLOIBBSTOIOTEOIBSIBOINOBOIONNBONDS

mum cr 9000000000 0SNISIOIBOLOIOGOIOGIOGORIOSOSIOBTOTIOSBRABONNDN

PIP Cr S0 0080000000008 0000000000000800000008000»

0
\D(D\I?\U'l-hu)l\)

ED Ufrl cr 00 8000080000000 80800000300000000000000

SY%EN cr [EEERENEEEREEENENEERNENENRERERRNNR R R NNENNERNR]

SUBMT Ufn mm#l LR N} mm#n cr LR R R R NN N NN NN]
D[]MP Ufn cr 9000008000000 008808000000000000000sn

MCPM cr 0008000000000 000808080000800000000000080

(oW« e Mo e) We We) We)
) .
LY

Bm EMR msms S8 8 0800000000000 000000000000000

OPERATImw CP/M ON'I‘PE mC............

Page

(=)} www =t

OWWOWOoooo I

27
28
30
33

34

1. INTRODUCTION,

CP/M is a monitor control program for microcomputer system development
which uses IBM-compatible flexible disks for backup storage, Using a computer
mainframe based upon Intel’s 8080 microcomputer, CP/M provides a general
environment for program construction, storage, and editing, along with
assembly and program check-out facilities, An important feature of CP/M is
that it can be easily altered to execute with any computer configuration which
uses an Intel 8080 (or Zilog Z-80) Central Processing Unit, and has at least
16K bytes of main memory with up to four IBM-compatible diskette drives, A
detailed discussion of the modifications required for any particular hardware
environment is given in the Digital Research document entitled "CP/M System
Alteration Guide."” Although the standard Digital Research version operates on
a single-density Intel MDS 800, several different hardware manufacturers
support their own input-output drivers for CP/M.

The CP/M monitor provides rapid access to programs through a
comprehensive file management package. The file subsystem supports a named
file structure, allowing dynamic allocation of file space as well as
sequential and random file access, Using this file system, a large number of
distinct programs can be stored in both source and machine executable form,

CP/M also supports a powerful context editor, Intel-compatible assembler,
and debugger subsystems, Optional software includes a powerful
Intel-campatible macro assembler, symbolic debugger, along with various
high-level languages. When coupled with CP/M°s Console Command Processor, the
resulting facilities equal or excel similar large computer facilities,

CP/M is logically divided into several distinct parts:

BIOS Basic I/O System (hardware dependent)
BDOS Basic Disk Operating System

CcCp Console Command Processor

TPA Transient Program Area

The BIOS provides the primitive operations necessary to access the
diskette drives and to interface standard peripherals (teletype, CRT, Paper
Tape Reader/Punch, and user-defined peripherals), and can be tailored by the
user for any particular hardware environment by "patching" this portion of
CP/M, The BDOS provides disk management by controlling one or more disk
drives containing independent file directories, The BDOS implements disk
allocation strategies which provide fully dynamic file construction while
minimizing head movement across the disk during access, Any particular file
may contain any number of records, not exceeding the size of any single disk.
In a standard CP/M system, each disk can contain up to 64 distinct files., The

BDOS has entry points which include the following primitive operations which
can be programmatically accessed:

SEARCH Look for a particular disk file by name,

OPEN Open a file for further operations,

CLOSE Close a file after processing,

RENAME Change the name of a particular file,

READ Read a record from a particular file,

WRITE Write a record onto the disk,

SELECT Select.a particular disk drive for further
operations,

The CCP provides symbolic interface between the user s console and the
remainder of the CP/M system, The CCP reads the console device and processes
commands which include listing the file directory, printing the contents of
files, and controlling the operation of transient programs, such as
assemblers, editors, and debuggers. The standard commands which are available
in the CCP are listed in a following section,

The last segment of CP/M is the area called the Transient Program Area
(TPA), The TPA holds programs which are loaded from the disk under command of
the CCP, During program editing, for example, the TPA holds the CP/M text
editor machine code and data areas, Similarly, programs created under CP/M
can be checked out by loading and executing these programs in the TPA,

It should be mentioned that any or all of the CP/M component subsystems
can be "overlayed" by an executing program, That is, once a user s program is
loaded into the TPA, the CCP, BDOS, and BIOS areas can be used as the
program’s data area, A "bootstrap" loader is programmatically accessible
whenever the BIOS portion is not overlayed; thus, the user program need only
branch to the bootstrap loader at the end of execution, and the complete CP/M
monitor is reloaded from disk,

It should be reiterated that the CP/M operating system is partitioned
into distinct modules, including the BIOS portion which defines the hardware
environment in which CP/M is executing, Thus, the standard system can be
easily modified to any non-standard enviromment by changing the peripheral
drivers to handle the custom system,

2., FUNCTIONAL DESCRIPTION OF CP/M.

The user interacts with CP/M primarily through the CCP, which reads and
interprets cammands entered through the console, In general, the CCP
addresses one of several disks which are online (the standard system addresses
up to four different disk drives), These disk drives are labelled A, B, C,
and D, A disk is "logged in" if the CCP is currently addressing the disk., 1In
order to clearly indicate which disk is the currently logged disk, the CCP
always prompts the operator with the disk name followed by the symbol ">"
indicating that the CCP is ready for another command., Upon initial start up,
the CP/M system is brought in from disk A, and the CCP displays the message

xxK CP/M VER m.m

where xx is the memory size (in kilobytes) which this CP/M system manages, and
m.,m is the CP/M version number, All CP/M systems are initially set to operate
in a 16K -memory space, but can be easily reconfigured to fit any memory size
on the host system (see the MOVCPM transient cammand), Following system
signon, CP/M automatically logs in disk ‘A, prompts the user with the symbol
"A>" (indicating that CP/M is currently addressing disk "A"), and waits for a
command, The cammands are implemented at two levels: built-in commands and
transient cammands,

2.1, GENERAL COMMAND STRUCTURE,
Built-in commands are a part of the CCP program itself, while transient

commands are loaded into the TPA from disk and executed, The built-in
commands are

ERA Erase specified files,

DIR List file names in the directory,

REN Rename the specified file,

SAVE Save memory contents in a file,

TYPE Type the contents of a file on the logged disk.

Nearly all of the cammands reference a particular file or group of files, The
form of a file reference is specified below,

2.2, FILE REFERENCES,

A file reference identifies a particular file or group of files on a
particular disk attached to CP/M. These file references can be either
“unambigwus" (ufn) or "ambiguwous" (afn). An unambiguous file reference
uniquely identifies a single file, while an ambiguous file reference may be

satisfied by a number of different files,

File references consist of two parts: the primary name and the secondary
name, Although the secondary name is optional, it usually is generic; that
is, the secondary name "ASM," for example, is used to denote that the file is
an assembly language source file, while the primary name distinguishes each
particular source file, The two names are separated by a "." as shown below:

PPPPPPPP. SSS

where pppppppp represents the primary name of eight characters or less, and
sss is the secondary name of no more than three characters, As mentioned
above, the name

PPPPPPPP

is also allowed and is eguivalent to a secondary name consisting of three
blanks, The characters used in specifying an unambiguous file reference
cannot contain any of the special characters

< >] 14 ; : = ? * []
while all alphanumerics and remaining special characters are allowed,

An ambigwus file reference is used for directory search and pattern
matching, The form of an ambiguwous file reference is similar to an
unambiguous reference, except the symbol "?" may be interspersed throughout
the primary and secondary names, In various commands throughout CP/M, the "?"
symbol matches any character of a file name in the "?" position, Thus, the
ambiguous reference

X?22.C?M

is satisfied by the unambiguous file names
XYz ,COM

and
X3Z .CaM

Note that the ambiguwous reference

* %
e

is equivalent to the ambiguous file reference

2972772772.727

while

PPPPPPPP. *
and
* _sss
are abbreviations for
PPPPPPPP. 27?2

22222222 .888

and

respectively, As an example,
DIR * *

is interpreted by the CCP as a conmand to list the names of all disk files in
the directory, while

DIR X,Y
searches only for a file by the name X.Y Similarly, the command
DIR X?Y.C?M

causes a search for all (unambiguous) file names on the disk which satisfy
this ambiguwous reference,

The following file names are valid unambiguous file references:
X XYZ GAMMA

X.Y XYz ,QOM GAMMA,1

As an added convenience, the programmer can generally specify the disk
drive name along with the file name. 1In this case, the drive name is given as
a letter A through Z followed by a colon (:). The specified drive is then
“logged in" before the file operation occurs, Thus, the following are valid
file names with disk name prefixes:

A:X.Y B:XYZ C:GAMMA
Z :XY7 ,COM B:X,A?M C:* ,ASM
It should also be noted that all alphabetic lower case letters in file

and drive names are always translated to upper case when they are processed by
the CCP,

3. SWITCHING DISKS.

The operator can switch the currently logged disk by typing the disk
drive name (A, B, C, or D) followed by a colon (:) when the CCP is waiting for
console imput, Thus, the sequence of prompts and commands shown below might
occur after the CP/M system is loaded from disk A:

16K CP/M VER 1.4

A>DIR List all files on disk A,
SAMPLE ASM

SAMPLE PRN

A>B: Switch to disk B,

B>DIR * ,ASM List all “AsM" files on B,
DUMP ASM

FILES ASM

B>A: Switch back to A,

4, THE FORM OF BUILT-IN (COMMANDS,.

The file and device reference forms described above can now be used to
fully specify the structure of the built-in cammands, In the description
below, assume the following abbreviations:

ufn - unambiguous file reference
afn - ambiguwous file reference
) 4 - carriage return

Further, recall that the CCP always translates lower case characters to upper
case characters internally, Thus, lower case alphabetics are treated as if
they are upper case in cammand names and file references,

4.1 ERA afn cr

The ERA (erase) command removes files from the currently logged-in disk
(i.e., the disk name currently prompted by CP/M preceding the ">"), The files
which are erased are those which satisfy the ambiguous file reference afn,
The following examples illustrate the use of ERA:

ERA X,Y The file named X.Y on the currently logged disk
is removed from the disk directory, and the space
is returned,

ERA X,* All files with primary name X are removed from
the current disk,

ERA * ASM All files with secondary name ASM are removed
from the current disk,

ERA X?Y.C?M All files on the current disk which satisfy the
ambiguwous reference X?Y,C?M are deleted.

ERA * * Erase all files on the current disk (in this case
the CCP prompts the console with the message
"ALL FILES (Y/N)?2"
which requires a Y response before files are
actually removed) ,

ERA B:* ,PRN All files on drive B which satisfy the ambiguous
reference ????????.PRN are deleted, independently
of the currently logged disk.

4,2, DIR afn cr
The DIR (directory) command causes the names of all files which satisfy
the ambigwus file name afn to be listed at the console device, As a special
case, the cammand
DIR

lists the files on the currently logged disk (the command "DIR" is equivalent
to the canmand "DIR *,.*"), Valid DIR commands are shown below.

DIR X,Y

DIR X?Z,C?M

DIR ??2,Y

Similar to other CCP commands, the afn can be preceded by a drive name,

The following DIR cammands cause the selected drive to be addressed before the
directory search takes place,

DIR B:

DIR B:X.Y

DIR B:* ,A?M

If no files can be found on the selected diskette which satisfy the
directory request, then the message “NOT FOUND" is typed at the console,

4,3. REN ufnl=ufn2 cr

The REN (rename) command allows the user to change the names of files on
disk, The file satisfying ufn2 is changed to ufnl, The currently logged disk
is assumed to contain the file to rename (ufnl), The CCP also allows the user
to type a left-directed arrow instead of the equal sign, if the user’s console
supports this graphic character, Examples of the REN command are

REN X,Y=Q.R The file Q.R is changed to X.Y.
REN XYZ ,COM=XYZ XXX The file XYZ.,XXX is changed to XYZ,QOM,

The operator can precede either ufnl or ufn2 (or both) by an optional
drive address, Given that ufnl is preceded by a drive name, then ufn2 is
assumed to exist on the same drive as ufnl, Similarly, if ufn2 is preceded by
a drive name, then ufnl is assumed to reside on that drive as well, If both
ufnl and ufn2 are preceded by drive names, then the same drive must be

specified in both cases, The following REN commands illustrate this format.

REN A:X,ASM = Y,ASM The file Y,ASM is changed to X.ASM on
drive A,

REN B:ZAP,BAS=Z0T,BAS The file ZOT.BAS is changed to ZAP,BAS
on drive B,

REN B:A,ASM = B:A,BAK The file A.BAK is renamed to A,ASM on
drive B.

If the file ufnl is already present, the REN command will respond with
the error "FILE EXISTS" and not perform the change, If ufn2 does not exist on
the specified diskette, then the message "NOT FOUND" is printed at the
console,

4,4, SAVE n ufn cr

The SAVE canmand places n pages (256-byte blocks) onto disk from the TPA
and names this file ufn, 1In the CP/M distribution system, the TPA starts at
100H (hexadecimal), which is the second page of memory. Thus, if the user’s
program occupies the area from 1@@9H through 2FFH, the SAVE command must
specify 2 pages of memory. The machine code file can be subsequently loaded
and executed, Examples are:

SAVE 3 X.OOM Copies 10@H through 3FFH to X,COM,

SAVE 40 Q Copies 1@00H through 28FFH to Q (note
that 28 is the page count in 28FFH,
and that 28H = 2*16+8 = 40 decimal).

SAVE 4 X,Y Copies 1@0@H through 4FFH to X.Y.

The SAVE command can also specify a disk drive in the afn portion of the
command, as shown below,

SAVE 10 B:Z0T,COM Copies 10 pages (10@H through @AFFH) to
the file ZOT.COM on drive B,

4,5, TYPE ufn cr

The TYPE command displays the contents of the ASCII source file ufn on
the currently logged disk at the console device, Valid TYPE commands are

TYPE X.Y

TYPE X,PIM
TYPE XXX
The TYPE command expands tabs (clt-I characters), assumming tab positions
are set at every eighth colum, The ufn can also reference a drive name as
shown below,

TYPE B:X.PRN The file X.PRN from drive B is displayed.

10

‘ 5. LINE EDITING AND OUTPUT (CONTROL.

The CCP allows certain line editing functions while typing command lines,

rubout Delete and echo the last character typed at the
console,

ctl-U Delete the entire line typed at the console,

ctl-X (Same as ctl-U)

ctl-R Retype current cammand line: types a "clean line" fol-
lowing character deletion with rubouts,

ctl-E Physical end of line: carriage is returned, but line
is not sent until the carriage return key is depressed,

ctl-C CP/M system reboot (warm start)

ctl-Z End input from the console (used in PIP and ED),

The control functions ctl-P and ctl-S affect console output as shown below.

ctl-p Copy all subseguent console output to the currently
assigned list device (see the STAT command). Output
is sent to both the list device and the console device
' until the next ctl-P is typed.

ctl-S Stop the console output temporarily. Program execution
and output continue when the next character is typed
at the console (e.g., another ctl-S)., This feature is
used to stop output on high speed consoles, such as
CRT s, in order to view a segment of output before con-
tinuing,

Note that the ctl-key sequences shown above are obtained by depressing the
control and letter keys simultaneously, Further, CCP command lines can
generally be up to 255 characters in length; they are not acted upon until the
carriage return key is typed.

‘ 11

6. TRANSIENT COMMANDS,.

Transient commands are loaded from the currently logged disk and executed
in the TPA., The transient cammands defined for execution under the CCP are
shown below, Additional functions can easily be defined by the user (see the
LOAD cammand definition),

STAT List the number of bytes of storage remaining on the
currently logged disk, provide statistical information
about particular files, and display or alter device
assignment,

ASM Load the CP/M assembler and assemble the specified
program from disk,

LQOAD Load the file in Intel "hex" machine code format and
produce a file in machine executable form which can be
loaded into the TPA (this loaded program becomes a
new command under the CCP).

DDT Load the CP/M debugger into TPA and start execution,

PIP Load the Peripheral Interchange Program for subsequent
disk file and peripheral transfer operations,

ED Load and execute the CP/M text editor program,

SYSGEN Create a new CP/M system diskette,

SUBMIT Submit a file of commands for batch processing.

DUMP Dump the contents of a file in hex.

MOVCPM Rggenerate the CP/M system for a particular memory
size,

Transient commands are specified in the same manner as built-in commands, and
additional commands can be easily defined by the user, As an added
convenience, the transient command can be preceded by a drive name, which
causes the transient to be loaded from the specified drive into the TPA for
execution, Thus, the command

B:STAT
causes CP/M to temporarily "log in" drive B for the source of the STAT

transient, and then return to the original 1logged disk for subsequent
processing,

12

The basic transient commands are listed in detail below.
6.1, STAT cr

The STAT command provides general statistical information about file
storage and device assignment, It is initiated by typing one of the following
forms:

STAT cr
STAT "command line" cr

Special forms of the "command line" allow the current device assignment to be
examined and altered as well, The various command lines which can be
specified are shown below, with an explanation of each form shown to the
right,

STAT cr If the user types an empty command line, the STAT
transient calculates the storage remaining on all
active drives, and prints a message

x: R/W, SPACE: nnnK
or
X: R/O, SPACE: nnnK

for each active drive x, where R/W indicates the
drive may be read or written, and R/O indicates
the drive is read only (a drive becomes R/O by
explicitly setting it to read only, as shown
below, or by inadvertantly changing diskettes
without performing a warm start)., The space
remaining on the diskette in drive x is given
in kilobytes by nnn,

STAT x: cr If a drive name is given, then the drive is
selected before the storage is computed, Thus,
the command "STAT B:" could be issued while
logged into drive A, resulting in the message

BYTES REMAINING ON B: nnnK

STAT afn cr The command line can also specify a set of files
to be scanned by STAT, The files which satisfy
afn are listed in alphabetical order, with stor-
age requirements for each file under the heading

RECS BYTS EX D:FILENAME,TYP
rrrr bbbK ee d:pppppppp.sss

where rrrr is the number of 128-byte records

13

allocated to the file, bbb is the number of kilo-
bytes allocated to the file (bbb=rrrr*128/1024),
ee is the number of 16K extensions (ee=bbb/16),

d is the drive name containing the file (A...Z),
ppPeprpppp is the (up to) eight-character primary
file name, and sss is the (up to) three-character
secondary name, After listing the individual
files, the storage usage is summarized.

STAT x:afn cr As a convenience, the drive name can be given
ahead of the afn, 1In this case, the specified
drive is first selected, and the form "STAT afn"
is executed,

STAT x:=R/0 cr This form sets the drive given by x to read-only,
which remains in effect until the next warm or
cold start takes place. When a disk is read-only,
the message

BDOS ERR ON x: READ ONLY

will appear if there is an attempt to write to
the read-only disk x. CP/M waits until a key

is depressed before performing an automatic warm
start (at which time the disk becomes R/W).

The STAT command also allows control over the physical to logical device
assignment (see the IOBYTE function described in the manuals “CP/M Interface
Guide" and "CP/M System Alteration Guide"), In general, there are four
logical peripheral devices which are, at any particular instant, each assigned
to one of several physical peripheral devices, The four logical devices are
named:

CON: The system console device (used by CCP
for communication with the operator)

RDR: The paper tape reader device

PUN: The paper tape punch device

LST: The output list device

The actual devices attached to any particular computer system are driven
by subroutines in the BIOS portion of CP/M., Thus, the logical RDR: device,
for example, could actually be a high speed reader, Teletype reader, or
cassette tape, In order to allow some flexibility in device naming and
assignment, several physical devices are defined, as shown below:

14

TTY: Teletype device (slow speed console)

CRT: Cathode ray tube device (high speed console)

BAT': Batch processing (console is current RDR:,
output goes to current LST: device)

UCl: User-defined console

PTR: Paper tape reader (high speed reader)

UR1: User-defined reader #1

UR2: User-defined reader #2

PTP: Paper tape punch (high speed punch)

UPl: User-defined punch #1

UP2: User-defined punch #2

LPT: Line printer

ULl: User-defined list device #1

It must be emphasized that the physical device names may or may not
actually correspond to devices which the names imply. That is, the PIP:
device may be implemented as a cassette write operation, if the user wishes,
The exact correspondence and driving subroutine is defined in the BIOS portion
of Cp/M., In the standard distribution version of CP/M, these devices
correspond to their names on the MDS 800 development system,

The possible logical to physical device assignments can be displayed by
typing
STAT VAL: cr

The STAT prints the possible values which can be taken on for each logical
device:

OON. = TTY: CRT: BAT: UCl:
RDR: = TTY: PTR: URl: UR2:
PUN: = TTY: PTP: UPl: UP2:
LST: = TTY: CRT: LPr: ULl:

In each case, the logical device shown to the left can take any of the four
physical assignments shown to the right on each line, The current logical to
physical mapping is displayed by typing the command

STAT DEV: cr

15

which produces a listing of each logical device to the left, and the current
corresponding physical device to the right, For example, the 1list might
appear as follows:

QON: = CRT:
RDR: = UR1l:
PUN: = PTP:
LST: = TTY:

The current logical to physical device assignment can be changed by typing a
STAT command of the form

STAT 141 = pdl, 1d2 = pd2 , ... , 1dn = pdn cr
where 1dl through 1ldn are logical device names, and pdl through pdn are
compatible physical device names (i.e., 1di and pdi appear on the same line in
the "VAL:" cammand shown above), The following are valid STAT commands which
change the current logical to physical device assignments:

STAT (ON:=CRT: cr
STAT PUN: = TTY:,LST:=LPT:, RDR:=TTY: Cr

6.2. ASM ufn cr
The ASM command loads and executes the CP/M 8080 assembler, The ufn
specifies a source file containing assembly language statements where the
secondary name is assumed to be ASM, and thus is not specified., The following
ASM commands are valid:
ASM X
ASM GAMMA

The two-pass assembler is automatically executed, If assembly errors occur
during the second pass, the errors are printed at the console,

The assembler produces a file
X .PRN
where x is the primary name specified in the ASM command. The PRN file
contains a listing of the source program (with imbedded tab characters if

present in the source program), along with the machine code generated for each
statement and diagnostic error messages, if any., The PRN file can be listed

16

at the console using the TYPE command, or sent to a peripheral device using
PIP (see the PIP command structure below). Note also that the PRN file
contains the original source program, augmented by miscellaneous assembly
information in the leftmost 16 columns (program addresses and hexadecimal
machine code, for example). Thus, the PRN file can serve as a backup for the
original source file: if the source file is accidently removed or destroyed,
the PRN file can be edited (see the ED operator’s gquide) by removing the
leftmost 16 characters of each line (this can be done by issuing a single
editor "macro" cammand)., The resulting file is identical to the original
source file and can be renamed (REN) from PRN to ASM for subsequent editing
and assembly, The file

X HEX

is also produced which contains 8080 machine language in Intel “hex" format
suitable for subsequent loading and execution (see the LOAD command). For
complete details of CP/M’s assembly language program, see the "CP/M Assembler
Language (ASM) User ‘s Guide,"

Similar to other transient commands, the source file for assembly can be
taken fraom an a.ternate disk by prefixing the assembly language file name by a
disk drive name, Thus, the command

ASM B:ALPHA cr
loads the assembler from the currently logged drive and operates upon the
source program ALPHA,ASM on drive B, The HEX and PRN files are also placed on
drive B in this case,

6.3. LOAD ufn cr

The LOAD command reads the file ufn, which is assumed to contain "hex"
format machine code, and produces a memory image file which can be
subsequently executed, The file name ufn is assumed to be of the form

X HEX

and thus only the name x need be specified in the command., The LOAD command
creates a file named

x,COM
which marks it as containing machine executable code., The file is actually
Z_loadeq into memory and executed when the user types the file name x
immediately after the prompting character ">" printed by the CCP.
In general, the CCP reads the name x following the prompting character

and looks for a built-in function name. If no function name is found, the CCP
searches the system disk directory for a file by the name

17

X ,COM

If found, the machine code is loaded into the TPA, and the program executes,
Thus, the user need only LOAD a hex file once; it can be subsequently
executed any number of times by simply typing the primary name. In this way,
the user can "invent" new commands in the CCP, (Initialized disks contain the
transient cammands as OM files, which can be deleted at the user’s option,)
The operation can take place on an alternate drive if the file name is
prefixed by a drive name, Thus,

LOAD B:BETA

brings the LOAD program into the TPA from the currently logged disk and
operates upon drive B after execution begins,

It must be noted that the BETA.HEX file must contain valid Intel format
hexadecimal machine code records (as produced by the ASM program, for example)
which begin at 100H, the beginning of the TPA, Further, the addresses in the
hex records must be in ascending order; gaps in unfilled memory regions are
filled with zeroes by the LOAD command as the hex records are read, Thus,
LOAD must be used only for creating CP/M standard "COM" files which operate in
the TPA, Programs which occupy regions of memory other than the TPA can be
loaded under DDT,

6.4, PIP cr

PIP is the CP/M Peripheral Interchange Program which implements the basic
media conversion operations necessary to load, print, punch, copy, and combine
disk files, The PIP program is initiated by typing one of the following forms

(1) PIP cr
(2) PIP "command line" cr

In both cases, PIP is loaded into the TPA and executed, 1In case (1), PIP
reads command lines directly from the console, prompted with the "**
character, until an empty command line is typed (i.e., a single carriage
return is issued by the operator), Each successive command line causes some
media conversion to take place according to the rules shown below, Form (2)
of the PIP command is equivalent to the first, except that the single command
line given with the PIP command is automatically executed, and PIP terminates
immediately with no further prompting of the console for input command lines,
The form of each cammand line is

destination = source#l, source#2, ... , source#n cr

where “"destination" is the file or peripheral device to receive the data, and

18

"source#l, ..., source#n” represents a series of one or more files or devices
which are copied from left to right to the destination,

When multiple files are given in the command line (i.e, n > 1), the
individual files are assumed to contain ASCII characters, with an assumed CP/M
end-of-file character (ctl-Z) at the end of each file (see the O parameter to
override this assumption), The eqgual symbol (=) can be replaced by a
left-oriented arrow, if your console supports this ASCII character, to improve
readability, Lower case ASCII alphabetics are internally translated to upper
case to be consistent with CP/M file and device name conventions, Finally,
the total command line length cannot exceed 255 characters (ctl-E can be used
to force a physical carriage return for lines which exceed the console width),

The destination and source elements can be unambiguous references to CP/M
source files, with or without a preceding disk drive name, That is, any file
can be referenced with a preceding drive name (A:, B:, C:, or D:) which
defines the particular drive where the file may be obtained or stored, When
the drive name is not included, the currently logged disk is assumed,
Further, the destination file can also appear as one or more of the source
files, in which case the source file is not altered until the entire
concatenation is complete, If the destination file already exists, it is
removed if the conmand line is properly formed (it is not removed if an error
condition arises), The following command lines (with explanations to the
right) are valid as input to PIP:

X=Ycr Copy to file X from file Y,
where X and Y are unambiguous
file names; Y remains unchanged,

X=Y,2 cr Concatenate files Y and Z and
copy to file X, with Y and 2
unchanged,

X ,ASM=Y ASM,Z ,ASM,FIN,ASM cr Create the file X.ASM from the
concatenation of the Y, Z, and
FIN files with type ASM,

NEW,.ZOT = B:OLD,ZAP cr Move a copy of OLD,ZAP from drive
B to the currently logged disk;
name the file NEW,ZOT,

B:A,U = B:B,V,A:C,W,D.X cr Concatenate file B,V from drive B

with C,W from drive A and D.X.
from the logged disk; create
the file A.U on drive B,

For more convenient use, PIP allows abbreviated commands for transferring
files between disk drives, The abbreviated forms are

19

PIP x:=afn cr
PIP x:=y:afn cr
PIP ufn = y: cr
PIP x:ufn = y: cr

The first form copies all files from the currently logged disk which satisfy
the afn to the same file names on drive x (x = A...Z). The second form is
equivalent to the first, where the source for the copy is drive y (y = A...
Z). The third form is eguivalent to the command "PIP ufn=y:ufn cr" which
copies the file given by ufn from drive y to the file ufn on drive x., The
fourth form is equivalent to the third, where the source disk is explicitly
given by v.

Note that the source and destination disks must be different in all of
these cases, If an afn is specified, PIP lists each ufn which satisfies the
afn as it is being copied. If a file exists by the same name as the
destination file, it is removed upon successful completion of the copy, and
replaced by the copied file,

The following PIP commands give examples of valid disk-to-disk copy
operations:

B:=*_ (OM cr Copy all files which have the
secondary name "QOOM" to drive B
from the current drive,

:=B:ZAP,* cr Copy all files which have the
primary name "“ZAP" to drive A
from drive B,

ZAP,ASM=B: cr Equivalent to ZAP,ASM=B:ZAP,ASM
B:ZOT,(OM=A: cr Equivalent to B:ZOT,COM=A:Z0T.COM
B:=GAMMA.BAS cr Same as B:GAMMA,BAS=GAMMA,BAS
B:=A:GAMMA,BAS cr Same as B:GAMMA,BAS=A:GAMMA,BAS

PIP also allows reference to physical and logical devices which are
attached to the CP/M system, The device names are the same as given under the
STAT command, along with a number of specially named devices, The logical
devices given in the STAT command are

(CON: (console), RDR: (reader), PUN: (punch), and IST: (list)

while the physical devices are

20

TTY: (console, reader, punch, or list)

CRT: (console, or list), UCl: (console)
PTR: (reader), URl: (reader), UR2: (reader)
PTP: (punch), UPl: (punch), UP2: (punch)

LPT: (list), ULl: (list)

(Note that the "BAT:" physical device is not included, since this assignment
is used only to indicate that the RDR: and LST: devices are to be used for
console imput/output,)

The RDR, LST, PUN, and CON devices are all defined within the BIOS
portion of CP/M, and thus are easily altered for any particular I/O system,
(The current physical device mapping is defined by IOBYTE; see the "CP/M
Interface Guide" for a discussion of this function), The destination device
must be capable of receiving data (i.e., data cannot be sent to the punch),
and the source devices must be capable of generating data (i.e., the LST:
device cannot be read),

The additional device names which can be used in PIP commands are

NUL: Send 40 "nulls" (ASCII @°s) to the device
(this can be issued at the end of punched output),

EOF : Send a CP/M end-of-file (ASCII ctl-Z) to the
destination device (sent automatically at the
end of all ASCII data transfers through PIP),

INP: Special PIP input source which can be "patched"
into the PIP program itself: PIP gets the input
data character-by-character by CALLing location
103H, with data returned in location 1@9H (parity
bit must be zero).

OouT: Special PIP output destination which can be
patched into the PIP program: PIP CALLs location
106H with data in register C for each character
to transmit, Note that locations 109H through
1FFH of the PIP memory image are not used and
can be replaced by special purpose drivers using
DDT (see the DDT operator s manual).

PRN: Same as LST:, except that tabs are expanded at
every eighth character position, lines are
numbered, and page ejects are inserted every 60
lines, with an initial eject (same as [t8np]).

File and device names can be interspersed in the PIP commands, In each
case, the specific device is read until end-of-file (ctl-Z for ASCII files,
and a real end of file for non-ASCII disk files), Data from each device or
file is concatenated from left to right until the last data source has been

21

read, The destination device or file is written using the data from the
source files, and an end-of-file character (ctl-Z) is appended to the result
for ASCII files, Note if the destination is a disk file, then a temporary
file is created ($$$ secondary name) which is changed to the actual file name
only upon successful campletion of the copy. Files with the extension "COM"
are always assumed to be non-ASCII,

The copy operation can be aborted at any time by depressing any key on
the keyboard (a rubout suffices), PIP will respond with the message "ABORTED"
to indicate that the operation was not completed, Note that if any operation
is aborted, or if an error occurs during processing, PIP removes any pending
commands which were set up while using the SUBMIT command.

It should also be noted that PIP performs a special function if the
destination is a disk file with type "HEX" (an Intel hex formatted machine
code file), and the source is an external peripheral device, such as a paper
tape reader, 1In this case, the PIP program checks to ensure that the source
file contains a properly formed hex file, with legal hexadecimal values and
checksum records, When an invalid input record is found, PIP reports an error
message at the console and waits for corrective action, It is usually
sufficient to open the reader and rerun a section of the tape (pull the tape
back about 20 inches), When the tape is ready for the re-read, type a single
carriage return at the console, and PIP will attempt another read, If the
tape position cannot be properly read, simply continue the read (by typing a
return following the error message), and enter the record manually with the ED
program after the disk file is constructed, For convenience, PIP allows the
end-of-file to be entered from the console if the source file is a RDR:
device, In this case, the PIP program reads the device and monitors the
keyboard, If ctl-Z is typed at the keyboard, then the read operation is
terminated normally,

Valid PIP commands are shown below.

PIP LST: = X,PRN cr Copy X.PRN to the LST device and
terminate the PIP program,

PIP cr Start PIP for a sequence of
commands (PIP prompts with "*"),

*(ON:=X,ASM,Y,ASM,Z ,ASM cr Concatenate three ASM files and
copy to the CON device,

*X HEX=CON:,Y . HEX,PTR: Ccr Create a HEX file by reading the
ON (until a ctl-Z is typed), fol-
lowed by data from Y.HEX, followed
by data from PTR until a ctl-Z is
encountered,

*cr Single carriage return stops PIP,

22

PIP PUN:=NUL:,X.ASM,EOF:,NUL: cr Send 40 nulls to the punch device;
then copy the X.ASM file to the
punch, followed by an end-of-file
(ctl-2) and 40 more null charac-
ters,

The user can also specify one or more PIP parameters, enclosed in left
and right square brackets, separated by zero or more blanks, Each parameter
affects the copy operation, and the enclosed 1list of parameters must
immediately follow the affected file or device. Generally, each parameter can
be followed by an optional decimal integer value (the S and Q parameters are
exceptions), The valid PIP parameters are listed below,

B Block mode transfer: data is buffered by PIP until an ASCII
x-off character (ctl-S) is received from the source device,
This allows transfer of data to a disk file from a continuous
reading device, such as a cassette reader, Upon receipt of
the x-off, PIP clears the disk buffers and returns for more
input data, The amount of data which can be buffered is de-
pendent upon the memory size of the host system (PIP will
issue an error message if the buffers overflow).

Dn Delete characters which extend past column n in the transfer
of data to the destination from the character source, This
parameter is used-most often to truncate long lines which are
sent to a (narrow) ‘Brinter or console device,

E Echo all transfer "operations to the console as they are being
performed,
F Filter form feeds from the file, All imbedded form feeds are

removed, The P parameter can be used simultaneously to
insert new form feeds,

H Hex data. transfer: all data is checked for proper Intel hex
file format. Non-essential characters between hex records
are removed during the copy operation, The console will be
prompted for corrective action in case errors occur,

I Ignore ":08" records in the transfer of Intel hex format
file (the I parameter automatically sets the H parameter).

L Translate upper case alphabetics to lower case,

N Add line numbers to each line transferred to the destination

starting at one, and incrementing by 1., Ieading zeroes are
suppressed, and the number is followed by a colon, If N2

is specified, then leading zeroes are included, and a tab is
inserted following the number. The tab is expanded if T is

23

set,

o Object file (non-ASCII) transfer: the normal CP/M end of
file is ignored,

Pn Include page ejects at every n lines (with an initial page
eject)., If n=1 or is excluded altogether, page ejects
occur every 60 lines, If the F parameter is used, form feed
suppression takes place before the new page ejects are
inserted,

0s?z Quit copying from the source device or file when the
string s (terminated by ctl-Z) is encountered.

Sstz Start copying from the source device when the string s is
encountered (terminated by ctl-Z), The S and Q parameters
can be used to "abstract" a particular section of a file
(such as a subroutine), The start and quit strings are al-
ways included in the copy operation,

NOTE - the strings following the s and g parameters are
translated to upper case by the CCP if form (2) of the
PIP conmand is used, Form (1) of the PIP invocation, how-
ever, does not perform the automatic upper case translation,
(1) PIP cr
(2) PIP “"command line" cr

Tn Expand tabs (ctl-I characters) to every nth column during the
transfer of characters to the destination from the source.

U Translate lower case alphabetics to upper case during the
the copy operation,

\Y Verify that data has been copied correctly by rereading
after the write operation (the destination must be a disk
file).

Z Zero the parity bit on input for each ASCII character.

The following are valid PIP commands which specify parameters in the file
transfer:

PIP X,ASM=B: [v] cr Copy X.ASM from drive B to the current drive
and verify that the data was properly copied,

PIP LPT:=X,ASM[nt8u] cr Copy X.ASM to the LPT: device; number each
line, expand tabs to every eighth column, and
translate lower case alphabetics to upper ‘
case,

24

PIP PUN:=X,HEX[i] ,Y.ZOT[h] cr First copy X.HEX to the PUN: device and
ignore the trailing ":00" record in X.HEX;
then continue the transfer of data by reading
Y.Z0T, which contains hex records, including
any ":00" records which it contains,

PIP X,LIB = Y,ASM [sSUBRl1:"z qIMP 137z] cr Copy from the file Y,ASM
into the file X.LIB, Start the copy when the
string "SUBRl:" has been found, and quit copy-
ing after the string "JMP L3" is encountered.

PIP PRN:=X,ASM[p50] Send X.ASM to the LST: device, with line num-
bers, tabs expanded to every eighth column,
and page ejects at every 50th line, Note that
nt8p6@d is the assumed parameter list for a PRN
file; p5@ overrides the default value,

6.5. ED ufn cr

The ED program is the CP/M system context editor, which allows creation
and alteration of ASCII files in the CP/M environment, Complete details of
operation are given the ED user’s manual, "ED: a Context Editor for the CP/M
Disk System.” 1In general, ED allows the operator to create and operate upon
source files which are organized as a sequence of ASCII characters, separated
by end-of-line characters (a carriage-return line-feed sequence). There is no
practical restriction on line length (no single line can exceed the size of
the working memory), which is instead defined by the number of characters
typed between cr’s. The ED program has a number of commands for character
string searching, replacement, and insertion, which are useful in the creation
and correction of programs or text files under CP/M, Although the CP/M has a
limited memory work space area (approximately 5000 characters in a 16K CP/M
system), the file size which can be edited is not limited, since data is
easily "paged" through this work area,

Upon initiation, ED creates the specified source file, if it does not
exist, and opens the file for access, The programmer then "appends" data from
the source file into the work area, if the source file already exists (see the
A command), for editing, The appended data can then be displayed, altered,
and written from the work area back to the disk (see the W command).
Particular points in the program can be automatically paged and located by
context (see the N command), allowing easy access to particular portions of a
large file,

Given that the operator has typed

ED X.ASM cr

25

the ED program creates an intermediate work file with the name

X.$$$

to hold the edited data during the ED run, Upon completion of ED, the X.,ASM
file (original file) is renamed to X.BAK, and the edited work file is renamed
to X.ASM, Thus, the X,BAK file contains the original (unedited) file, and the
X.,ASM file contains the newly edited file, The operator can always return to
the previous version of a file by removing the most recent version, and
renaming the previous version, Suppose, for example, that the current X.ASM
file was improperly edited; the seguence of CCP command shown below would
reclaim the backup file,

DIR X.* Check to see that BAK file
is available,

ERA X.ASM Erase most recent version,

REN X,ASM=X,BAK Rename the BAK file to ASM,

Note that the operator can abort the edit at any point (reboot, power failure,
ctl-C, or Q command) without destroying the original file, In this case, the
BAK file is not created, and the original file is always intact,

The ED program also allows the user to "ping-pong" the source and create
backup files between two disks, The form of the ED command in this case is

ED ufn d:

where ufn is the name of a file to edit on the currently logged disk, and d is
the name of an alternate drive, The ED program reads and processes the source
file, and writes the new file to drive d, using the name ufn, Upon completion
of processing, the original file becomes the backup file, Thus, if the
operator is addressing disk A, the following command is valid:

ED X.ASM B:

which edits the file X.ASM on drive A, creating the new file X.$$$ on drive
B. Upon campletion of a successful edit, A:X.ASM is renamed to A:X.BAK, and
B:X,$$$ is renamed to B:X.,ASM, For user convenience, the currently logged
disk becomes drive B at the end of the edit, Note that if a file by the name
B:X,ASM exists before the editing begins, the message

FILE EXISTS
is printed at the console as a precaution against accidently destroying a

source file, 1In this case, the operator must first ERAse the existing file
and then restart the edit operation,

26

Similar to other transient cammands, editing can take place on a drive
different from the currently logged disk by preceding the source file name by
a drive name, Examples of valid edit requests are shown below

ED A:X,ASM Edit the file X,ASM on drive A, with
new file and backup on drive A,

ED B:X,ASM A: Edit the file X,ASM on drive B to the
temporary file X.$$$ on drive A, On
termination of editing, change X,ASM
on drive B to X,BAK, and change X,.$$$
on drive A to X.ASM,

6.6. SYSGEN cr

The SYSGEN transient command allows generation of an initialized diskette
containing the CP/M operating system, The SYSGEN program prompts the console
for canmands, with interaction as shown below,

SYSGEN cr Initiate the SYSGEN program,
SYSGEN VERSION m.m SYSGEN sign-on message,

SOURCE DRIVE NAME (OR RETURN TO SKIP)

Respond with the drive name (one
of the letters A, B, C, or D) of
the disk containing a CP/M sys-
tem; usually A, If a copy of
CP/M already exists in memory,
due to a MOVCPM command, type a
cr only, Typing a drive name

X will cause the response:

SOURCE ON x THEN TYPE RETURN Place a diskette containing the
CP/M operating system on drive
X (x isone of A, B, C, or D),
Answer with cr when ready.

FUNCTION QOMPLETE System is copied to memory.
SYSGEN will then prompt with:

DESTINATION DRIVE NAME (OR RETURN TO REBOOT)

If a diskette is being ini-
tialized, place the new disk
into a drive and answer with
the drive name, Otherwise, type
a cr and the system will reboot
from drive A, Typing drive name
X will cause SYSGEN to prompt

27

with:

DESTINATION ON x THEN TYPE RETURN Place new diskette into drive
X; type return when ready,

FUNCTION COMPLETE New diskette is initialized
in drive x.

The "DESTINATION" prompt will be repeated until a single carriage return is
typed at the console, so that more than one disk can be initialized.,

Upon campletion of a successful system generation, the new diskette
contains the operating system, and only the built-in commands are available,
A factory-fresh IBM-compatible diskette appears to CP/M as a diskette with an
empty directory; therefore, the operator must copy the appropriate COM files
from an existing CP/M diskette to the newly constructed diskette using the PIP
transient,

The user can copy all files from an existing diskette by typing the PIP
command

PIP B: = A: * ,*[v] cr

which copies all files from disk drive A to disk drive B, and verifies that
each file has been copied correctly, The name of each file is displayed at
the console as the copy operation proceeds,

It should be noted that a SYSGEN does not destroy the files which already
exist on a diskette; it results only in construction of a new operating
system, Further, if a diskette is being used only on drives B through D, and
will never be the source of a bootstrap operation on drive A, the SYSGEN need
not take place, In fact, a new diskette needs absolutely no initialization to
be used with CP/M,

6.7. SUBMIT ufn parm#l ... parm#n cr

The SUBMIT command allows CP/M commands to be batched together for
automatic processing, The ufn given in the SUBMIT command must be the
filename of a file which exists on the currently logged disk, with an assumed
file type of "SUB.," The SUB file contains CP/M prototype commands, with
possible parameter substitution, The actual parameters parm#l ... parm#n are
substituted into the prototype commands, and, if no errors occur, the file of
substituted cammands are processed sequentially by CP/M,

28

The prototype command file is created using the ED program, with
interspersed "$" parameters of the form

$1 $2 $3 ... $n

corresponding to the number of actual parameters which will be included when
the file is swmitted for execution, When the SUBMIT transient is executed,
the actual parameters parm#l ... parmin are paired with the formal parameters
$1 ... Sn in the prototype commands, If the number of formal and actual
parameters does not correspond, then the submit function is aborted with an
error message at the console, The SUBMIT function creates a file of
substituted cammands with the name

$$$.SUB

on the logged disk. When the system reboots (at the termination of the
SUBMIT), this cammand file is read by the CCP as a source of input, rather
than the console. 1If the SUBMIT function is performed on any disk other than
drive A, the cammands are not processed until the disk is inserted into drive
A and the system reboots, Further, the user can abort cammand processing at
any time by typing a rubout when the command is read and echoed. In this
case, the $$$.SUB file is removed, and the subsequent commands come from the
console, Command processing is also aborted if the CCP detects an error in
any of the cammands, Programs which execute under CP/M can abort processing of
command files when error conditions occur by simply erasing any existing
$8$8.SUB file,

In order to introduce dollar signs into a SUBMIT file, the user may type
a "$$" which reduces to a single "$" within the command file, Further, an
up-arrow symbol "*" may precede an alphabetic character x, which produces a
single ctl-x character within the file,

The last cammand in a SUB file can initiate another SUB file, thus
allowing chained batch commands.

Suppose the file ASMBL,SUB exists on disk and contains the prototype
commands
ASM $1
DIR $1.*
ERA *_ BAK
PIP $2:=$1,PRN
ERA $1,PRN

and the command
SUBMIT ASMBL X PRN cr

is issued by the operator. The SUBMIT program reads the ASMBL.SUB file,

substituting "X" for all occurrences of $1 and "PRN" for all occurrences of
$2, resulting in a $$$.SUB file containing the commands

29

AM X

DIR X.*

ERA *,BAK
PIP PRN:=X,PRN
ERA X.PRN

which are executed in sequence by the CCP,

The SUBMIT function can access a SUB file which is on an alternate drive
by preceding the file name by a drive name. Submitted files are only acted
upon, however, when they appear on drive A, Thus, it is possible to create a
submitted file on drive B which is executed at a later time when it is
inserted in drive A,

6.8. DUMP ufn cr

The DUMP program types the contents of the disk file (ufn) at the console
in hexadecimal form, The file contents are listed sixteen bytes at a time,
with the absolute byte address 1listed to the left of each line in
hexadecimal, Long typeouts can be aborted by pushing the rubout key during
printout, (The source listing of the DUMP program is given in the "CP/M
Interface Guide" as an example of a program written for the CP/M environment.,)

6.9. MOVCPM cr

The MOVCPM program allows the user to reconfigure the CP/M system for any
particular memory size, Two optional parameters may be used to indicate (1)
the desired size of the new system and (2) the disposition of the new system
at program termination, If the first parameter is amitted or a "*" is given,
the MOVCPM program will reconfigure the system to its maximum size, based upon
the kilobytes of contiguous RAM in the host system (starting aat @000H)., If
the second parameter is amitted, the system is executed, but not permanently
recorded; if "*" is given, the system is left in memory, ready for a SYSGEN
operation, The MOVCPM program relocates a memory image of CP/M and places
this image in memory in preparation for a system generation operation, The
command forms are:

MOVCPM cr Relocate and execute CP/M for manage-
ment of the current memory configura-
tion (memory is examined for contigu-
ous RAM, starting at 10@H). Upon com—
pletion of the relocation, the new
system is executed but not permanently
recorded on the diskette, The system
which is constructed contains a BIOS
for the Intel MDS 800.

30

MOVCPM n cr Create a relocated CP/M system for
management of an n kilobyte system (n
must be in the range 16 to 64), and
execute the system, as described above,

MOVCPM * * cr Construct a relocated memory image for
the current memory configuration, but
leave the memory image in memory, in
preparation for a SYSGEN operation,

MOVCPM n * cr Construct a relocated memory image for
an n kilobyte memory system, and leave
the memory image in preparation for a
SYSGEN operation,

The cammand
MOVCPM * *

for example, constructs a new version of the CP/M system and leaves it in
memory, ready for a SYSGEN operation, The message

READY FOR "SYSGEN" OR
. "SAVE 32 CPMXX.mM"

is printed at the console upon completion, where xx is the current memory size
in kilobytes, The operator can then type

SYSGEN cr ‘ Start the system generation,

SOURCE IRIVE NAME (OR RETURN TO SKIP) Respond with a cr to skip
the CP/M read operation since the system
is already in memory as a result of the
previous MOVCPM operation,

DESTINATION DRIVE NAME (OR RETURN Tg@ REBOOT)
Respond with B to write new system
to the diskette in drive B, SYSGEN
will prompt with:

DESTINATION ON B, THEN TYPE RETURN

Ready the fresh diskette on drive
B and type a return when ready.

Note that if you respond with "A" rather than "B" above, the system will be
written to drive A rather than B, SYSGEN will continue to type the prompt:

DESTINATION DRIVE NAME (OR RETURN TO REBOOT)

‘ until the operator responds with a single carriage return, which stops the

31

SYSGEN program with a system reboot,

The user can then go through the reboot process with the o0ld or new
diskette, 1Instead of performing the SYSGEN operation, the user could have

typed
SAVE 32 CPMxx,COM

at the campletion of the MOVCPM function, which would place the CP/M memory
image on the currently logged disk in a form which can be "patched." This is
necessary when operating in a non-standard environment where the BIOS must be
altered for a particular peripheral device configuration, as described in
the"CP/M System Alteration Guide,"

Valid MOVCPM commands are given below:

MOVCPM 48 cr Construct a 48K verskon of CP/M and start
execution,
MOVCPM 48 * cr Construct a 48K version of CP/M in prepara-

tion for permanent recordina; response is

READY FOR "SYSGEN" OR
"SAVE 32CPM48,COM"

MOVCPM * * cr Construct a maximum memory version of CP/M
and start execution,

It is important to note that the newly created system is serialized with
the number attached to the original diskette and is subject to the conditions
of the Digital Research Software Licensing Agreement,

32

7. BDOS ERROR MESSAGES,

There are three error situations which the Basic Disk Operating System
intercepts during file processsing, When one of these conditions is detected,
the BDOS prints the message:

BDOS ERR ON x: error

where x is the drive name, and "error" is one of the three error messages:

BAD SECTOR
SELECT
READ ONLY

The "BAD SECTOR" message indicates that the disk controller electronics
has detected an error condition in reading or writing the diskette, This
condition is generally due to a malfunctioning disk controller, or an
extremely worn diskette, If you find that your system reports this error more
than once a month, you should check the state of your controller electronics,
and the condition of your media, You may also encounter this condition in
reading files generated by a controller produced by a different manufacturer,
Even though controllers are claimed to be IBM-compatible, one often finds
small differences in recording formats, The MDS-80@ controller, for example,
requires two bytes of one’s following the data CRC byte, which is not reguired
in the IBM format, As a result, diskettes generated by the Intel MDS can be
read by almost all other IBM-compatible systems, while disk files generated on
other manufacturer’s equipment will produce the "BAD SECTOR" message when read
by the MDS, In any case, recovery from this condition is accomplished by
typing a ctl-C to reboot (this is the safest!), or a return, which simply
ignores the bad sector in the file operation, Note, however, that typing a
return may destroy your diskette integrity if the operation is a directory
write, so make sure you have adeqguate backups in this case.

The "SELECT" error occurs when there is an attempt to address a drive
beyond the A through D range, 1In this case, the value of x in the error
message gives the selected drive, The system reboots following any input from
the console,

The "READ ONLY" message occurs when there is an attempt to write to a
diskette which has been designated as read-only in a STAT command, or has been
set to read-only by the BDOS, In general, the operator should reboot CP/M
either by using the warm start procedure (ctl-C) or by performing a cold start
whenever the diskettes are changed. If a changed diskette is to be read but
not written, BDOS allows the diskette to be changed without the warm or cold
start, but internally marks the drive as read-only., The status of the drive
is subsequently changed to read/write if a warm or cold start occurs. Upon
issuing this message, CP/M waits for input from the console, An automatic
warm start takes place following any input,

33

8. OPERATION OF CP/M ON THE MDS,.

This section gives operating procedures for using CP/M on the Intel MDS
microcomputer development system, A basic knowledge of the MDS hardware and
software systems is assumed,

CP/M is initiated in essentially the same manner as Intel’s ISIS
operating system, The disk drives are labelled @ through 3 on the MDS,
corresponding to CP/M drives A through D, respectively, The CP/M system
diskette is inserted into drive @, and the BOOT and RESET switches are
depressed in sequence, The interrupt 2 light should go on at this point. The
space bar is then depressed on the device which is to be taken as the system
console, and the light should go out (if it does not, then check connections
and baud rates)., The BOOT switch is then turned off, and the CP/M signon
message should appear at the selected console device, followed by the "A>"
system prompt., The user can then issue the various resident and transient
commands

The CP/M system can be restarted (warm start) at any time by pushing the
INT @ switch on the front panel, The built-in Intel ROM monitor can be
initiated by pushing the INT 7 switch (which generates a RST 7), except when
operating under DDT', in which case the DDT program gets control instead.

Diskettes can be removed from the drives at any time, and the system can
be shut down during operation without affecting data integrity, Note,
however, that the user must not remove a diskette and replace it with another
without rebooting the system (cold or warm start), unless the inserted
diskette is "read only,"

Due to hardware hang-ups or malfunctions, CP/M may type the message
BDOS ERR ON x: BAD SECTOR

where x is the drive which has a permanent error, This error may occur when
drive doors are opened and closed randomly, followed by disk operations, or
may be due to a diskette, drive, or controller failure, The user can
optionally elect to ignore the error by typing a single return at the
console, The error may produce a bad data record, requiring re-initialization
of up to 128 bytes of data. The operator can reboot the CP/M system and try
the operation again,

Termination of a CP/M session requires no special action, except that it
is necessary to remove the diskettes before turning the power off, to avoid
random transients which often make their way to the drive electronics,

It should be noted that factory-fresh IBM-compatible diskettes should be
used rather than diskettes which have previously been used with any ISIS
version, In particular, the ISIS "FORMAT" operation produces non-standard
sector numbering throughout the diskette, This non-standard numbering
seriously degrades the performance of CP/M, and will operate noticeably slower

34

than the distribution version, If it becomes necessary to reformat a diskette
(which should not be the case for standard diskettes), a program can be
written under CP/M which causes the MDS 80@ controller to reformat with
sequential sector numbering (1-26) on each track.,

- s

Note: "MDS 800" and "ISIS" are registered trademarks of Intel Corporation,

35

Einc s

)l DIGITAL RESEARCH

. Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M 2.0 INTERFACE GUIDE

Copyright (e) 1979

DIGITAL RESEARCH

Copyright (e) 1979 by Digital Research. All rights reserved.
No part of this publication may be reproduced, transmitted,
transeribed, stored in a retrieval system, or translated into
any language or computer language, in any form or by any
means, electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written permission of
Digital Research, Post Office Box 579, Pacific Grove,
California 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any parti-
cular purpose. Further, Digital Research reserves the right
to revise this publication and to make changes from time to
time in the content hereof without obligation of Digital
Research to notify any person of such revision or changes.

CP/M 2.0 INTERFACE GUIDE

Copyright (c) 1979
Digital Research, Box 579
Pacific Grove, California

Introduction . « « &

Operating System Call Conventions
A Sample File-to-File Copy Program

A Sample File Dump Utility .

A Sample Random Access Program .,

System Function Summary

34
37

46

1. INTRODUCTION.

This manual describes CP/M, release 2, system organization
including the structure of memory and system entry points. The
intention is to provide the necessary information required to write
programs which operate under CP/M, and which use the peripheral and
disk I/0 facilities of the system.

CP/M is logically divided into four parts, called the Basic 1I/0
System (BIOS), the Basic Disk Operating System (BDOS), the Console
command processor (CCP), and the Transient Program Area (TPA). The
BIOS is a hardware-dependent module which defines the exact low level
interface to a particular computer system which is necessary for
peripheral device 1I/0. Although a standard BIOS is supplied by
Digital Research, explicit instructions are provided for field
reconfiguration of the BIOS to match nearly any hardware environment
(see the Digital Research manual entitled "CP/M Alteration Guide").
The BIOS and BDOS are logically combined into a single module with a
common entry point, and referred to as the FDOS. The CCP is a
distinct program which uses the FDOS to provide a human-oriented
interface to the information which is cataloged on the backup storage
device, The TPA is an area of memory (i.e.,, the portion which is not
used by the FDOS and CCP) where various non-resident operating system
commands and user programs are executed. The lower portion of memory
is reserved for system information and .is detailed later sections,
Memory organization of the CP/M system in shown below:

high | |

memory | |

| FDOS (BDOS+BIOS) |

FBASE: | I

| I

] cce |

CBASE: | |

I |

| |

| |

| TPA I

| I

TBASE: | |
| system parameters

BOOT: | l

The exact memory addresses corresponding to BOOT, TBASE, CBASE, and
FBASE vary from veérsion to version, and are described fully in the
“CP/M Alteration Guide.,” All standard CP/M versions, however, assume
BOOT = 0@0PH, which is the base of random access memory. The machine
code found at location BOOT performs a system "warm start" which loads
and initializes the programs and variables necessary to return control
to the CCP. Thus, transient programs need only jump to location BOOT

(All Information Contained Herein is Proprietary to Digital Research.)

1

X

to return control to CP/M at the command level, Further, the standard
versions assume TBASE = BOOT+@1@0H which is normally location @100H,.
The principal entry point to the FDOS is at location BOOT+@@@5H
(normally @#P0O5H) where a jump to FBASE is found. The address field at
BOOT+0@06H (normally 0@@6H) contains the value of FBASE and can be
used to determine the size of available memory, assuming the CCP is
being overlayed by a transient program.

Transient programs are loaded into the TPA and executed as
follows. The operator communicates with the CCP by typing command
lines following each prompt, Each command line takes one of the
forms:

command
command filel
command filel file2

where “command" is either a built-in function such as DIR or TYPE, or
the name of a transient command or program. If the command is a
built-in function of CP/M, it is executed immediately, Otherwise, the
CCP searches the currently addressed disk for a file by the name

command, COM

If the file is found, it is assumed to be a memory image of a program
which executes in the TPA, and thus implicitly originates at TBASE in
memory. The CCP loads the COM file from the disk into memory starting
at TBASE and possibly extending up to CBASE,

If the command is followed by one or two file specifications,
the CCP prepares one or two file control block (FCB) names in the
system parameter area, These optional FCB's are in the form necessary
to access files through the FDOS, and are described in the next
section,

The transient program receives control from the CCP and begins
execution, perhaps using the I/O facilities of the FDOS. The
transient program is “called" from the CCP, and thus can simply return
to the CCP upon completion of its processing, or can jump to BOOT to
pass control back to CP/M. In the first case, the transient program
must not use memory above CBASE, while in the latter case, memory up
through FBASE-1 is free,

The transient program may use the CP/M I/0 facilities to
communicate with the operator's console and peripheral devices,
including the disk subsystem. The I/O system is accessed by passing a
"function number" and an "information address® to CP/M through the
FDOS entry point at BOOT+@@@5H, In the case of a disk read, for
example, the transient program sends the number corresponding to a
disk read, along with the address of an FCB to the CP/M FDOS. The
FDOS, in turn, performs the operation and returns with either a disk
read completion indication or an error number indicating that the disk
read was unsuccessful. The function numbers and error indicators are
given in below.

(A1l Information Contained Herein is Proprietary to Digital Research.)

2

2. OPERATING SYSTEM CALL CONVENTIONS.

The purpose of this section is to provide detailed information
for performing direct operating system calls from user programs. Many
of the functions 1listed below, however, are more simply accessed
through the I/0 macro library provided with the MAC macro assembler,
and listed in the Digital Research manual entitled "MAC Macro
Assembler: Language Manual and Applications Guide."

CP/M facilities which are available for access by transient
programs fall into two general categories: simple device I/0, and
disk file I/0. The simple device operations include:

Read a Console Character

Write a Console Character

Read a Sequential Tape Character
Write a Sequential Tape Character
Write a List Device Character
Get or Set I/O Status

Print Console Buffer

Read Console Buffer

Interrogate Console Ready

The FDOS operations which perform disk Input/Output are

Disk System Reset

Drive Selection

File Creation

File Open

File Close

Directory Search

File Delete

File Rename

Random or Sequential Read
Random or Sequential Write
Interrogate Available Disks
Interrogate Selected Disk
Set DMA Address "
Set/Reset File Indicators =

As mentioned above, access to the FDOS functions is accomplished
by passing a function number and information address through the
primary entry point at location BOOT+@@@5H, 1In general, the function
number is passed in register C with the information address in the
double byte pair DE., Single byte values are returned in register A,
with double byte values returned in HL (a zero value is returned when
the function number is out of range). For reasons of compatibility,
register A = L and register B = H upon return in all cases. Note that
the register passing conventions of CP/M agree with those of 1Intel's
PL/M systems programming language. The list of CP/M function numbers
is given below,

(All Information Contained Herein is Proprietary to Digital Research.)

3

f System Reset 19 Delete File

1 Console Input 20 Read Sequential

2 Console Output 21 Write Seguential

3 Reader Input 22 Make File

4 Punch Output 23 Rename File

5 List Output 24 Return Login Vector

6 Direct Console I/0 25 Return Current Disk

7 Get I/0 Byte ‘26 Set DMA Address

8 Set I/0O Byte 27 Get Addr(Alloc)

9 Print String 28 Write Protect Disk
19 Read Console Buffer 29 Get R/O Vector
11 Get Console Status 30 Set File Attributes
12 Return Version Number 31 Get Addr(Disk Parms)
13 Reset Disk System 32 Set/Get User Code
14 Select Disk 33 Read Random
15 Open File 34 Write Random
16- Close File 35 Compute File Size
17 Search for First 36 Set Random Record
18 Search for Next

(Functions 28 and 32 should be avoided in application programs to
maintain upward compatibility with MP/M.)

Upon entry to a transient program, the CCP leaves the stack
pointer set to an eight level stack area with the CCP- return address
pushed onto the stack, leaving seven levels before overflow occurs.
Although this stack is usually not used by a transient program (i.e.,
most transients return to the CCP though a jump to location 6000H), it
is sufficiently large to make CP/M system calls since the FDOS
switches to a 1local stack at system entry. The following assembly
language program segment, for example, reads characters continuously
until an asterisk is encountered, at which time control returns to the
CCP (assuming a standard CP/M system with BOOT = JQ00H):

BDOS EQU @O05H ; STANDARD CP/M ENTRY
CONIN EQU 1 ; ;CONSOLE INPUT FUNCTION
. 3 A4
[4
ORG ¢16oH D ;BASE OF TPA
NEXTC: MVI C,CONIN{Ifdt .READ NEXT CHARACTER
CALL BDOS s RETURN CHARACTER IN <A>
CPI A ;END OF PROCESSING?
JINZ NEXTC sLOOP IF NOT
RET :RETURN TO CCP
END

CP/M implements a named file structure on each disk, providing a
logical organization which allows any particular file to contain any
number of records from completely empty, to the full capacity of the
drive. Each drive is logically distinct with a disk directory and
file data area. The disk file names are in three parts: the drive
select code, the file name consisting of one to eight non-blank
characters, and the file type consisting of zero to three non-blank

characters. The file type names the generic category of a particular
file, while the file name distinguishes individual files in each

category. The file types listed below name a few generic categories

(All Information Contained Herein is Proprietary to Digital Research.)

4

which have been established, although they are generally arbitrary:

ASM Assembler Source PLI PL/I Source File
PRN Printer Listing REL Relocatable Module
HEX Hex Machine Code TEX TEX Formatter Source

BAS Basic Source File BAK ED Source Backup
INT Intermediate Code SYM SID Symbol File
COM CCP Command File $$$ Temporary File

Source files are treated as a sequence of ASCII characters, where each
“line" of the source file is followed by a carriage-return line-feed
sequence (ODH followed by @AH). Thus one 128 byte CP/M record could
contain several lines of source text, The end of an ASCII file |is
denoted by a control-Z character (lAH) or a real end of file, returned
by the CP/M read operation, Control-Z characters embedded within
machine code files (e.g., COM files) are ignored, however, and the end
of file condition returned by CP/M 1is wused to terminate read
operations,

Files in CP/M can be thought of as a sequence of up to 65536
records of 128 bytes each, numbered from @ through 65535, thus
allowing a maximum of 8 megabytes per file, Note, however, that
although the records may be considered logically contiguous, they may
not be physically contiguous in the disk data area, Internally, all
files are broken into 16K byte segments called logical extents, so
that counters are easily maintained as 8-bit values, Although the
decomposition into extents 1is discussed in the paragraphs which
follow, they are of no particular consequence to the programmer since
each extent is automatically accessed in both seguential and random
access modes,

In the file operations starting with function number 15, DE
usually addresses a file control block (FCB). Transient programs
often use the default file control block area reserved by CP/M at
location BOOT+@@5CH (normally @@5CH) for simple file operations, The
basic unit of file information is a 128 byte record used for all file
operations, thus a default location for disk I/O is provided by CP/M
at location BOOT+0@80H (normally @080H) which is the initial default
DMA address (see function 26). All directory operations take place in
a reserved area which does not affect write buffers as was the case in
release 1, with the exception of Search First and Search Next, where
compatibility is required.

The File Control Block (FCB) data area consists of a sequence of
33 bytes for sequential access and a series of 36 bytes in the case
that the file 1is accessed randomly. The default file control block
normally located at @@5CH can be used for random access files, since
the three bytes starting at BOOT+0@7DH are available for this purpose.
The FCB format is shown with the following fields:

(All Information Contained Herein is Proprietary to Digital Research.)
5

e 61 62 ... 68 69 19 11 12 13 14 1516 ... 31 32 53 34 35
where

dr drive code (8 - 16)
@ => use default drive for file

l => auto disk select drive A,
2 => auto disk select drive B,

16=> auto disk select drive P.

£fl...£f8 contain the file name in ASCII
upper case, with high bit = 0

tl,t2,t3 contain the file type in ASCII
upper case, with high bit = 0
tl', t2', and t3' denote the
bit of these positions,

tl' = 1 => Read/Only file,
t2' = 1 => 8YS file, no DIR list
ex contains the current extent number,

normally set to 00 by the user, but
in range # - 31 during file I/0

sl reserved for internal system use

s2 reserved for internal system use, set
to zero on call to OPEN, MAKE, SEARCH

rc record count for extent “ex,"
takes on values from £ -~ 128

d@...dn filled-in by CB/M, reserved for
system use 1<

ety

cr current record to read or write in

a sequential file operation, normally
set to zero by user

rf,rl,r2 optional random record number in the

range @-65535, with overflow to r2,
rd,rl constitute a 16-bit value with

low byte r#, and high byte rl

Each file being accessed through CP/M must have a corresponding
FCB which provides the name and alloéocation information for all
subsequent file operations, When accessing files, it 1is the
programmer's responsibility to £ill the lower sixteen bytes of the FCB
and initialize the "cr" field. Normally, bytes 1 through 11 are set
to the ASCII character values for the file name and file type, while
all other fields are zero.

(All Information Contained Herein is Proprietary to Digital Research,)

6

FCB's are stored in a directory area of the disk, and are
brought into central memory before proceeding with file operations
(see the OPEN and MAKE functions). The memory copy of the FCB is
updated as file operations take place and later recorded permanently
on disk at the termination of the file operation (see the CLOSE
command) . :

The CCP constructs the first sixteen bytes of two optional FCB's
for a transient by scanning the remainder of the 1line following the
transient name, denoted by “filel" and "“file2" 1in the prototype
command line described above, with unspecified fields set to ASCII
blanks. The first FCB is constructed at location BOOT+@@5CH, and can
be used as~is for subsequent file operations, The second FCB occupies
the d¢ ... dn portion of the first FCB, and must be moved to another
area of memory before use, 1If, for example, the operator types

PROGNAME B:X,Z0T Y, ZAP

the file PROGNAME,COM is loaded into the TPA, and the default FCB at
BOOT+@05CH is initialized to drive code 2, file name "X" and file type
"“zZoT", The second drive code takes the default value @, which is
placed at BOOT+0@6CH, with the file name "Y" placed into location
BOOT+006DH and file type "ZAP" located 8 bytes later at BOOT+0@75H.
All remaining fields through "cr" are set to zero. Note again that it
is the programmer's responsibility to move this second file name and
type to another area, usually a separate file control block, before
opening the file which begins at BOOT+#05CH, due to the fact that the
open operation will overwrite the second name and type.

If no file names are specified in the original command, then the
fields beginning at BOOT+@@5DH and BOOT+@6@6DH contain blanks. In all
cases, the CCP translates lower case alphabetics to upper case to be
consistent with the CP/M file naming conventions,

As an added convenience, the default buffer area at location
BOOT+@P80H is initialized to the compand 1line tail typed by the
operator following the program name. Thé first position contains the
number of characters, with the characters themselves following the
character count., Given the above command line, the area beginning at
BOOT+00G8PH is initialized as follows:

BOOT+0080H:
+00 +01 +02 +03 +04 +05 +66 +67 +08 +09 +10 +11 +12 +13 +14
l 4 1] n " B L] ” : " ” X " " . " [1] Z " (1 O [1] 1] T (1} [1] " 2] Y 113 " . " [1] Z L1} " A " 1] P 11

where the characters are translated to upper case ASCII with
uninitialized memory following the last valid character. Again, it is

the responsibility of the programmer to extract the information from
this buffer before any file operations are performed, unless the
default DMA address is explicitly changed.

The individual functions are described in detail in the pages
which follow.

(A1l Information Contained Herein is Proprietary to Digital Research.)
7

KhkhkhkhkhkhkkkhkhkhkhhkkhkAkhhkhkhkhhhhhkkhkhkhhhhkxk

* *
* FUNCTION #: System Reset "
* *
IR R EE R RS SRR R R R R R R R R E R R R Y
* Entry Parameters: »
* Register C: @0H *

Khhkhkkhhhhkhkhkhkhkkhkhhhkhkhkhkhkhkhhhhdrkhkhhhkhkhhhkkk

The system reset function returns control to the CP/M operating
system at the CCP level. The CCP re-initializes the disk subsystem by
selecting and logging-in disk drive A. This function has exactly the
same effect as a jump to location BOOT,

hhkkkkkkkhhhhhhhhhkkhhhhhkkhkkkkkhhhhhhhkhx

* *
* FUNCTION 1: CONSOLE INPUT *
* *
Ahkhkhkhkkhkhkhkhhkkhkhkhkhkhkhhkhkhhhkhkhhkhkhhkhhkhhhhkkkk
* Entry Parameters: ®
* Register C: @1H *
* *
* Returned Value: N
* Register A: ASCII Character *
IR R RS EEE SRR R R RS EE R R R R R R R R R EE SRR

The console input function reads the next console character to
register A, Graphic characters, along with carriage return, line
feed, and backspace (ctl-H) are echoed to the console., Tab characters
(ctl-I) are expanded in columns of eight characters. A check is made
for start/stop scroll (ctl-S) and start/stop printer echo (ctl-P).
The FDOS does not return to the calling program until a character has
been typed, thus suspending execution if a character is not ready.

Ahkhkkhhkkhhkkkhkhhkhhkhrhkhkhkhkhhkhkh kA hkhkkkk

* *
* FUNCTION 2: CONSOLE OUTPUT *
* *
khkhkkhkkhhkhkhkhkhhkhkkhkhhkhkhkhkhkhkhkhhkhkkhkhhkhkhhkkk
* Entry Parameters: "
. Register C: @2H =
% Register E: ASCII Character *
* *

KhkhkhkhkhkkhkkAkhkhkkhhhkhkhkhkhhkhkhkhkhhkhkhhkhkhhkhkhkhhhkx

The ASCII character from register E 1is sent to the console
device, Similar to function 1, tabs are expanded and checks are made
for start/stop scroll and printer echo.

(All Information Contained Herein is Proprietary to Digital Research.)

8

L

khkkkdkhhkhdkkhkhkhkhkhkhhhhkkhkhkhkhkhkhkkkkk

* ¥ *
* FUNCTION 3: READER INPUT *
* *
khkhkhkkkkhkhkhkkhkhkkhkhkhkhkhkkkkhkhkhkkkkhkkkhkkkkhkkkk
* Entry Parameters: .k
* Register C: 03H *
* *
* Returned Value: *
* Register A: ASCII Character *
khkhkhkkhkhkhkhkhkhkhkhkhkhkhhkkkhkkkkkkhhkhhhhkkhkkhkhkhkkxk

The Reader Input function reads

the next character from the

logical reader into register A (see the IOBYTE definition in the "CP/M
Alteration Guide"). Control does not return until the character has

been read,

Akkkhhhkhkkhkhhkdhdhhhhkhhkhkhhkkkkhhhkkhkhhhkk

* *
* FUNCTION 4: PUNCH OUTPUT *
* *
khkkhkkhhhkhkkhkhkhhkhkhhkhkkhhkhhhkkkkhhkkhkhkk
* Entry Parameters: *
* Register C: @4H *
* Register E: ASCII Character *
* *

The Punch Output function sends the character from register E to

the logical punch device.

khkkkkhhkkhkhkhhkhkhhhhKhhkhhkhkhkhkhhhkkhkkkhxk

* *
* FUNCTION 5: LIST OUTPUT *
* *
khkkkkhhkkhkhhkkhkhkhkhkhkhkkhkkhhkhkkhkhkkhhhkhkkhkkkkk
* Entry Parameters: *
* Register C: 05H *
* Register E: ASCII Character *
* *

KRRk AR I Rk hhkhhkhhkhkhkkhhhkdkhkhhkhkhkx

L]

The List Output function sends the ASCII character in register E

to the logical listing device.

(All Information Contained Herein is Proprietary to Digital Research.)

9

khkkkkhkhkhkhkhkhkhkhkhkhkhkhkhhhkhkhkhhkhkhkhkhkhkhkhhkhkhhkkkk
* *

* FUNCTION 6: DIRECT CONSOLE I/O "
* *

Ahkkkhkhkhhkhkhkhkkhhhhhhhkhkhkhkhhkkhkhkhkhhhkkkhkhkk

* Entry Parameters:

Register C: 06H

Register E: @FFH (input) or
char (output)

Returned Value:

Register A: char or status
(no value)
KKK KR Ak kIR hkhkhRAk kXA hkhkhkhkkkhhhhkk

¥ % ¥ F ¥ X

*
*
*
*
*
*
*
*
*

Direct console I/0 is supported under CP/M for those specialized
applications where unadorned console input and output 1is required.
Use of this function should, in general, be avoided since it bypasses
all of CP/M's normal control character functions (e.g., control-S and
control-P) . Programs which perform direct I/0 through the BIOS under
previous releases of CP/M, however, should be changed to use direct
I/0 under BDOS so that they can be fully supported under future
releases of MP/M and CP/M.

Upon entry to function 6, register E either contains hexadecimal
FF, denoting a console input request, or register E contains an ASCII
character, If the input value is FF, then function 6 returns A = 00

if no character is ready, otherwise A contains the next console input
character.

If the input value in E is not FF, then function 6 assumes that
E contains a valid ASCII character which is sent to the console.

(A1l Information Contained Herein is Proprietary to Digital Research.)

10

khkhkkhhkhkhkhhkhkhkhkhhkkhkhhhkkhhkhhhkhkhhkkhkhhkhkkkhk

* *
* FUNCTION 7: GET I/O BYTE *
* *
khkhkhkkhkhhhhkhkhkhhkhkkhhkhhkkhkkhkhhkkkhhhhhkkkhk
* Entry Parameters: *
* Register C: @7H %
* *
* Returned Value: *
* Register A: 1I/0 Byte Value *
khkkkhhkkhkhhhhhkhkhkhhhkhhkhhkhhhhkhhhhhkkk

The Get I/O Byte function returns the current value of IOBYTE in
register A, See the "CP/M Alteration Guide" for IOBYTE definition.

Khkkhkkhhhkhhhkhhkhhkhhhkhhkhhhkhkhkhkhkhhkrhkhkkk

* *
* FUNCTION 8: SET I/O BYTE *
* *
LEE R R L E S R R SRR R R R EE SRS R EEEEEEEEEE RSN R
* Entry Parameters: *
d Register C: 08H =
* Register E: I/0 Byte Value *
* *

khhhhkkkhhkkkhkhhhkhkkhhhhhhhkhkhkhhkhhhhhkkk

The Set I/0 Byte function changes the system IOBYTE value to
that given in register E,

khkhkkhkhhhkhkkhkhkhkhhhhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhhhkhkkxk

* *
* FUNCTION 9: PRINT STRING *
* *
LRSS SRR R R R R R E R R R R R R RS R R R R R R R R X R
* Entry Parameters: ®
* Register C: 09H *
* Registers DE: String Address *
* *

khkkhhhkhhkhhhhkhkhkhhkhkhhhhdhhhkhkhkhhkhhkkkkhhkkk

The Print String function sends the character string stored 1in
memory at the location given by DE to the console device, until a "“$"
is encountered in the string, Tabs are expanded as in function 2, and
checks are made for start/stop scroll and printer echo.

(All Information Contained Herein is Proprietary to Digital Research,)

11

khkkkkkhkhkkhhkhkkhkhkhhkkkhhhkhhkkkkhkhhhkkkk

* *
* FUNCTION 18: READ CONSOLE BUFFER *
* *
AhhhhkkhhhAXkhkhkkkkkhhhhkhkhkhhkhkhkhdhhkkk
* Entry Parameters: *

Register C: 0AH
Registers DE: Buffer Address

Console Characters in Buffer

*
*
*
*
*
Khkkhkhkhkhhkhkhkhkhkhkhkhkkhkhhkhkhkhkkhkhhhkhkrhkhkk

*
*
*
* Returned Value:
*
*

The Read Buffer function reads a line of edited console input

into a buffer addressed by registers DE. Console input is terminateéd
when either the input buffer overflows. The Read Buffer takes the
form:

DE: +ﬂ +1 +2 +3 +4 +5 +6 +7 +8 o o . +n

where "mx" is the maximum number of characters which the buffer will

hold (1 to 255), "“nc" is the number of characters read (set by FDOS
upon return), followed by the characters read from the console., if nc
< mx, then uninitialized positions follow the last character, denoted
by "??2" in the above figure, A number of control functions are
recognized during line editing:

rub/del removes and echoes the last character
ctl-C reboots when at the beginning of line
ctl-E causes physical end of line

ctl-H backspaces one character position

ctl-dJ (line feeda‘termlnates input line

ctl-M (return) t¥thinates input line

ctl-R retypes thtPturrent line after new line
ctl-U removes currnt line after new line
ctl-X backspaces to beginning of current line

Note also that certain functions which return the carriage to the
leftmost position (e.g., ctl-X) do so only to the column position
where the prompt ended (in earlier releases, the carriage returned to

the extreme left margin). This convention makes operator data input
and line correction more leglble

(All Information Contained Herein is Proprietary to Digital Research.)

12

khkkkkkhhkhkhkkkhkhkhhkhkhkhkhhhhkhkhkhkkhkkkkhkhkhdkkk

* *
* FUNCTION 11: GET CONSOLE STATUS =
* *

khkkkhkkhkkhkhkhhkhhhhhhhkhkhhhhhhhhhhhhkkhhkkhkkx

* Entry Parameters: ®
Register C: 0OBH

* *
* *
* Returned Value: ®
* *
* *

Register A: Console Status
Ahkhkhkhkhkhkhkhkhkhkkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkkkkkx

The Console Status function checks to see if a character has

been typed at the console, If a character is ready, the value OFFH is
returned in register A, Otherwise a @0@H value is returned.

khkhkkhkhkhkhkhkhkhkhkhhkhkhhkhhkkhkhhkhkhkkkhkhkkhkkhkhkhhkhkkk

* *
*¥ FUNCTION 12: RETURN VERSION NUMBER *
* *
KhkhkhkhkhhkhhkhkhkhkhhkkhkhkkhkhkhkAkhhkhkhkhkkhkhhxhkkhkkkkkk
* Entry Parameters: %
* Register C: @CH *
* *
* Returned Value: "
» Registers HL: Version Number *
khkhkkhkhkkhhkkhkhkkhkhkhhkkhkkhhkhkhkhkhhkhhkhhkhhkhkhkhkhkkkkk
Function 3.2 provides information which allows version
independent programming., A two-byte value is returned, with H = 00

designating the CP/M release (H = 01 for MP/M), and L = 0@ for all
releases previous to 2,0, CP/M 2.0 returns a hexadecimal 20 1in
register L, with subsequent version 2 releases in the hexadecimal
range 21, 22, through 2F., Using function 12, for example, you can
write application programs which provide both sequential and random
access functions, with random access disabled when operating under
early releases of CP/M. 117

(All Information Contained Herein is Proprietary to Digital Research.)

13

khkkhkhhkkhkkkkhkkhkhhkhkkhkkkkhkhhkkkkhkkhkkhkhkikk

* *
* PFUNCTION 13: RESET DISK SYSTEM *
:*************************************i
* Entry Parameters: B
* Register C: ODH *
* *

KRAKKAX KA RKRANRIRAARAAk Ak kkhkhhhkkhhkhhkk

The Reset Disk Function is used to programmatically restore the
file system to a reset state where all disks are set to read/write
(see functions 28 and 29), only disk drive A 1is selected, and the
default DMA address 1is reset to BOOT+9@80H, This function can be
used, for example, by an application program which requires a disk
change without a system reboot,

khkkhkhkhkkhkkhkhkhkhkhkhkhkhhkhhkhkhhhkhkhkkkhkhkkhhkkkkkk

* *
* FUNCTION 14: SELECT DISK *
* *
khkhhkhhkkkhkkhhkhhkhkkkkkhhkhkhkhkkkhhkhkhhkkhkkkkkxk
* Entry Parameters: *
* Register C: OEH *
* Register E: Selected Disk *
* *

KEKKARAkdhkhhkhkxhkhkhhdhhhhhhkkhkkhkhhkhkhkhkkkk

The Select Disk function designates the disk drive named in
register E as the default disk for subsequent file operations, with E
= @ for drive A, 1 for drive B, and so-forth through 15 corresponding
to drive P in a full sixteen drive system. The drive is placed in an
“on-line" status which, in particular, activates its directory until
the next cold start, warm start, or disk system reset operation, 1If
the disk media is changed while it is on-line, the drive automatically
goes to a read/only status in a standard CP/M enviromment (see
function 28). FCB's which specify drive code =zero (dr = 09H)
automatically reference the currently selected default drive. Drive
code values between 1 and 16, however, ignore the selected default
drive and directly reference drives A through P.

(A1l Information Contained Herein is Proprietary to Digital Research.)
14

LR R L Y Y Y R AL

* *
* FUNCTION 15: OPEN FILE :
*

AR AR AR KRR KRR KRR RRRA R AR AR AR RR KA IR R RRRAKR

* Entry Parameters:
Register C: OFH
Registers DE: .FCB Address

Returned Value:

Register A: Directory Code

*
*
*
*
*
*
RS EXEESSLTI XSS SRS S R 2

*
*
*
*
*
*

The Open File operation is wused to activate a file which
currently exists in the disk directory for the currently active user
number. The FDOS scans the referenced disk directory for a match in
positions 1 through 14 of the FCB referenced by DE (byte sl is
automatically zeroed), where an ASCII guestion mark (3FH) matches any
directory character in any of these positions, Normally, no guestion
marks are included and, further, bytes "ex" and "s2" of the FCB are
zero.

If a directory element is matched, the relevant djirectory
information is copied into bytes d8 through dn of the FCB, thus
allowing access to the files through subsequent read and write
operations. Note that an existing file must not be accessed until a
sucessful open operation is completed. Upon return, the open function
returns a “directory code" with the value # through 3 if the opem was
successful, or OFFH (255 dec¢imal) if the file cannot be found, 1If
guestion marks occur in the FCB then the first matching FCB is
activated, Note that the current record (“cr") must be zeroed by the
program if the file is to be acc¢essed sequentially from the first
tecord,

(All Information Contained Herein is Proprietary to Digital Research.)

15

Khkkkhkhkhkkhkhhkhkhhkhhkhhhkhhhkhhhkhhkhhhhhhkhk

* *
* FUNCTION 16: CLOSE FILE ®
* *
Khkhkkhkhkhkhkhhkhhkkhkhhhhhkhhkhkhkhhhhhhhhkhrhkxhkhhkk
* Entry Parameters: o
* Register C: 10H *
% Registers DE: FCB Address *
* *
* Returned Value: -
* Register A: Directory Code *
kkkhkkhkhkhkhkhkhhhkhkhhhhhhkhkhkhhkhhhkhhhkkhkhkkhkk

The Close File function performs the inverse of the open file
function, Given that the FCB addressed by DE has been previously
activated through an open or make function (see functions 15 and 22),
the close function permanently records the new FCB in the referenced
disk directory. The FCB matching process for the close 1is identical
to the open function. The directory code returned for a successful
close operation is @, 1, 2, or 3, while a @FFH (255 decimal) is
returned if the file name cannot be found in the directory. A file
need not be closed if only read operations have taken place, If write
operations have occurred, however, the close operation is necessary to
permanently record the new directory information,

(All Information Contained Herein is Proprietary to Digital Research.)

16

hhkkhhkhkkhhhhkhkhhkhkkhhhkkkhhhhkhhhhhkhdkx
* *

* FUNCTION 17: SEARCH FOR FIRST :
*

* Entry Parameters:

Register C: 11H
Registers DE: FCB Address

¥ % ¥ ¥ ¥ *

Returned Value:

Register A: Directory Code
Kkhkkhkhkkhkhhkhkhhkhhkhkhkhkhkhhhrrxhhhhhkhkkkkkk

*
*
*
*
*
*

Search First scans the directory for a match with the file given
by the FCB addressed by .DE, The value 255 (hexadecimal FF) 1is
returned if the file is not found, otherwise 6, 1, 2, or 3 is returned
indicating the file i$§ present, 1In the case that the file is found,
the current DMA address is filled with the record containing the
directory entry, and the relative starting position is A * 32 (i.e.,
rotate the A register left 5 bits, or ADD A five times). Although not
normally required for application programs, the directory information
can be extracted from the buffer at this position,

An ASCII question mark (63 decimal, 3F hexadecimal) in any
position from "f1" through "ex" matches the corresponding field of any
directory entry on the default or auto-selected disk drive. If the
“dr" field contains an ASCII question mark, then the auto disk select
function 1is disabled, the default disk is searched, with the search
function returning any matched entry, allocated or free, belonging to
any user number. This latter function is not normally used by
application programs, but does allow complete flexibility to scan all
current directory values. If the "dr" field is not a question mark,
the "s2" byte is automatically zeroed,

Khkhkhkkhkhhhkhkhkhkhkhkkhkhkhhkhkhhkhkhkhkhkhkkhhkihhik

* %*
* FUNCTION 18: SEARCH FOR NEXT *
* *
hkhkkkkhkkhhkhkhkhhkhkhkhkhhkhhkhkhhhhkkkkkkkkkkkk*k
* Entry Parameters: *
* Register C: 12H X
* Returned Value: *
* Register A: Directory Code *

The Search Next function 1is similar to the Search First
function, except that the directory scan continues from the last

matched entry. Similar to function 17, function 18 returns the
decimal value 255 in A when no more directory items match.

(A1l Information Contained Herein is Proprietary to Digital Research.)

17

khkkkhkkhkkkhhkhkhkhkhkhkhkhkkhhhhhkhhhkhhhhhkd

* *
* FUNCTION 19: DELETE FILE *
* *

khkkkhkkhkhkhkhkhkkhkhkhhhhkhkhhkhkkhkhkhkhhxhkhhkhkhkhhkhhkhkk
* Entry Parameters:
Register C: 13H
Registers DE: FCB Address

*

Register A: Directory Code

*
*
*
*
*
khkkkhkkhkkhkhhkhhkhhkhhhkhkhkhhhkhhkhkhkhhkhhhkhkhkhkhk

*
*
*
: Returned Value:
*

The Delete File function removes files which match the FCB
addressed by DE. The filename and type may contain ambiguous
references (i.e., guestion marks in various positions), but the drive

select code cannot be ambiguous, as in the Search and Search Next
functions.

Function 19 returns a decimal 255 if the referenced file or

files cannot be found, otherwise a value in the range 0 to 3 is
returned,

Khkhhkhkhkhkhhkhhhkhkhhhhhhkhhhkhkhkhhhkhhkkxkhhhkk

* *
* FUNCTION 20: READ SEQUENTIAL »
* *
KXk Ahhhkhhhkhkhhkhkhkhkhhhkhkhhkhkhhkhhhhkhhkhhkkk
* Entry Parameters: =
- Register C: 14H *
* Registers DE: FCB Address *
* *
* Returned Value: »
* Register A: Directory Code *
khkhkkkhkhkhkhkhkkhkhhkhkhhkhhkhkhkhhkhkhkkhhkhkkhkhkhkhhkkkk

Given that the FCB addressed by DE has been activated through an
open or make function (numbers 15 and 22), the Read Sequential
function reads the next 128 byte record from the file into memory at
the current DMA address., the record is read from position "cr" of the
extent, and the "cr" field is automatically incremented to the next
record position, If the “cr" field overflows then the next logical
extent is automatically opened and the "cr" field is reset to zero in
preparation for the next read operation, The value @@H is returned in
the A register if the read operation was successful, while a non-zero
value is returned if no data exists at the next record position (e.g.,
end of file occurs).,

(All Information Contained Herein is Proprietary to Digital Research.)

18

*

khkkkhkhkhhhhhhhkhhhhkhhkhhkhhhhkhhhkkhkkkhk

* *
* FUNCTION 21: WRITE SEQUENTIAL :
*

Ahkkhkkhkhkhkhkhhhkhkhhkhkhhkhhkhhhkhhkhhhhhhhhhkk
* Entry Parameters: ®
* Register C: 15H *
* Registers DE: FCB Address *
* *
* Returned Value: ®
- Register A: Directory Code *
Ahkhkkhkhkhkhkkhkhkhhkhkhkhhkhkkkhkhkkhkhkhkhhkhkhkhxhhhkhkkk

Given that the FCb addressed by DE has been activated through an
open or make function (numbers 15 and 22), the Write Seguential
function writes the 128 byte data record at the current DMA address to
the file named by the FCB. the record is placed at position "cr" of
the file, and the "cr" field is automatically incremented to the next
record position, If the "cr" field overflows then the next logical
extent is automatically opened and the "cr" field is reset to zero in
preparation for the next write operation. Write operations can take
place into an existing file, in which case newly written records
overlay those which already exist in the file. Register A = @0H upon
return from a successful write operation, while a non-zero value
indicates an unsuccessful write due to a full disk.

LR R R R R T TR

* *
* FUNCTION 22: MAKE FILE *
* *
kKhkhhkkhkhhhhhkhkhhkhkhkhkhhhkkkkkhkhhkkkhkhhkkkkk
* Entry Parameters: "
x Register C: 16H L
* Registers DE: FCB Address *
* *
* Returned vValue: *
* Register A: Directory Code *
IR R RS R R R R RS R R R R R R R R R R R E R R R R

The Make File operation is similar to the open file operation
except that the FCB must name a file which does not exist in the
currently referenced disk directory (i.e., the one named explicitly by
a non-zero "dr" code, or the default disk if "dr" is zero). The FDOS
creates the file and initializes both the directory and main memory
value to an empty file. The programmer must ensure that no duplicate
file names occur, and a preceding delete operation is sufficient if
there is any possibility of duplication. Upon return, register A = 0,
1, 2, or 3 if the operation was successful and @FFH (255 decimal) if
no more directory space 1is available, The make function has the
side-effect of activating the FCB and thus a subsequent open is not
necessary.

(All Information Contained Herein is Proprietary to Digital Research.)

19

khkkkhhkhhkhhkhhkhhhhhk Xk xhhhkhkkhhhkhhrhkxk

* *
* FUNCTION 23: RENAME FILE *
* *
AhkhhkhkkhhhkhkhkkhkhkhhhkhkhkAAkhkhkhkhkkkkkhkhkhrkk
* Entry Parameters: *
* Register C: 17H *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Directory Code *
LR R R R R R R R PR R SRR R SR R

The Rename function uses the FCB addressed by DE to change all
occurrences of the file named in the first 16 bytes to the file named
in the second 16 bytes. The drive code "dr" at position § is used to
select the drive, while the drive code for the new file name at
position 16 of the FCB is assumed to be zero. Upon return, register A
is set to a value between § and 3 if the rename was successful, and
@FFH (255 decimal) if the first file name could not be found in the
directory scan.

KhKKRKRRA Kk hhhkhhkhkkhhhhkhhrrkkhkkhhkhdhhk

* *
* FUNCTION 24: RETURN LOGIN VECTOR *
* *

Khkhkkkkhkhkhhhkhhhkhkkhkhhkhkhkhkhkhkhhhkhkkxkhhkkhkkk

* Entry Parameters:
Register C: 18H

*

Registers HL: Login Vector
KRKKIIAKRKR KA K KRAKRARR KRR KKK R ARk hhkhkk

* *
* *
* Returned Value: *
* *
* *

The login vector value returned by CP/M is a 16-~bit value in HL,
where the least significant bit of L corresponds to the first drive A,
and the high order bit of H corresponds to the sixteenth drive,
labelled P. A "0" bit indicates that the drive is not on-line, while
a "1" bit marks an drive that is actively on-line due to an explicit
disk drive selection, or an implicit drive select caused by a file
operation which specified a non-zero “dr" field. Note that
compatibility is maintained with earlier releases, since registers A
and L contain the same values upon return,

(All Information Contained Herein is Proprietary to Digital Research.)

20

’

hhkhkkkhkkhhhkhkhhhkhhhhhhhhhhhhkkhhkhkhhrkkkk

* *
* FUNCTION 25: RETURN CURRENT DISK *
* *
hhhkkkhkhkkhkhkhkhkhkhhkhhkhkhkhhkhhkhkhhkhkhkhkkkhkkkkk
* Entry Parameters: *
% Register C: 19H *
* *
* Returned Value: ®
. Register A: Current Disk *
AKhkhkhkhkhkhkkhkhkhkhkhkhkhkhhkhhkhkhkhkhkkhkhhkhkhkhkxhkhkhhkrkit

Function 25 returns the currently selected default disk number

in register A, The disk numbers range from 6 through 15 corresponding
to drives A through P.

khkkkkhkhkhkhkhkhkhkhhkhkhkhhkhkhhkkhkhkrhkhkhkkkhhkkkd

* *
* FUNCTION 26: SET DMA ADDRESS *
* *
khkkkhkhhkhhhkhkhkhhkhkhhkkhkkhhkhkhhkhkhhhkhhkhkkhhhkkk
* Entry Parameters: *
* Register C: 1AH *
¥ Registers DE: DMA Address *
* *

AhkhkhkkhkhhkhhkhkhkhhkhhhhhhhkkhhkhhkhhhkhkhkhkAkXkhkhx%

"DMA" is an acronym for Direct Memory Address, which 1is often
used in connection with disk controllers which directly access the
memory of the mainframe computer to transfer data to and from the disk
subsystem. Although many computer systems use non-DMA access (i.e.,
the data 1is transfered through programmed I/O operations), the DMA
address has, in CP/M, come to mean the address at which the 128 byte
data record resides before a disk write and after a disk read. Upon
cold start, warm start, or disk system reset, the DMA address is
automatically set to BOOT+0@80H. The Set DMA function, however, can
be used to change this default value to address another area of memory
where the data records reside. Thus, the DMA address becomes the
value specified by DE until it is changed by a subsequent Set DMA
function, cold start, warm start, or disk system reset,

(All Information Contained Herein is Proprietary to Digital Research.)

21

khkkhkkkhkhkhkhkhkkhkkhkhkhhkhhhhkhhkhhhkkhhkkhkkkhkkk

* *
* FUNCTION 27: GET ADDR (ALLOC) *
* *
kKKK RAARAkkhkhkhkhkkhkhhkhkhxkdrhkhhhhkhhhnkk
* Entry Parameters: . %
* Register C: 1BH *
* *
* Returned Value: *
* Registers HL: ALLOC Address *#
KhXhkkkkhkkkkhkhkhkkkhkkhhkhkhkkhkkkhkkhkkhkkkhkhkkkhkkkkkk

An "allocation vector" is maintained in main memory for each
on-line disk drive, Various system programs use the information
provided by the allocation vector to determine the amount of remaining
storage (see the STAT program). Function 27 returns the base address
of the allocation vector for the currently selected disk drive. The
allocation information may, however, be invalid if the selected disk
has been marked read/only. Although this function is not normally
used by application programs, additional details of the allocation
vector are found in the "CP/M Alteration Guide."

KEkRKKKKKRKKRKAKKAKRKXKKNAkhhkhkhhhkhkhkkhkhkhhhdhhhdhkk

* *
* PUNCTION 28: WRITE PROTECT DISK :
*

khkhkhkkkhkhkkhkkkhkhkhkhkhkhkkkkhkkhkhkkkhkhkhkkhkkkhkkhkki
* Entry Parameters: *
* Register C: 1CH *
* *

kKhkkhkkkhhkhkkkhkhkhhhkhkhhhhkhhkkkhhhkkkkkkkk

The disk write protect function provides tempordry write
protection for the currently selected disk. Any attempt to write to
the disk, before the next cold or warm start operation produces the

message

Bdos Err on d4: R/O

(All Information Contained Herein is Proprietary to Digital Research.)

22

Khhkkhhhkhkhkhkhhhhhkhhkhhhhkhkhkhkhkhhkkhkkhkkxhkhhkk

* *
* PFUNCTION 29: GET READ/ONLY VECTOR *
* *
Khkhkhkhkhkkhkhkhkhkhkkhkhkhkhhhhkhkhhhkkhkkkkkkhhhkkk
* Entry Parameters: *
* Register C: 1DH *
* *
* Returned Value: *
* Registers HL: R/O Vector Value*
hkhhkhkkhkhhkhkhkhkhkhkhkhkkhkhkhkhkhhkhkkkkhhhkhkhhhkhkkkkk

Function 29 returns a bit vector in register pair HL which
indicates drives which have the temporary read/only bit set. Similar
to function 24, the least significant bit corresponds to drive A,
while the most significant bit corresponds to drive P. The R/O bit is
set either by an explicit call to function 28, or by the automatic
software mechanisms within CP/M which detect changed disks.

KEAkAhkkkkh kX hAkhhkkhkhhkhkhkhkhhhhhhkhhhhkx

* *
* FUNCTION 3¢: SET FILE ATTRIBUTES *
* *
Khkhkhhkhkkkhkhkhhhkkhhhkhkkhkhkkhhhhkhkhhhhhkrkkk
* Entry Parameters: *
* Register C: 1EH *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Directory Code * :
khkkhkhkhkhkhkkhhhkhhhkhkhkhkhkhkhhkkhhkhkhkdhxhkhkrkx

The Set File Attributes function allows programmatic
manipulation of permanent indicators attached to files. In
particular, the R/0 and System attributes (tl' and t2') can be set or
reset. The DE pair addresses an unambiguous file name with the
appropriate attributes set or reset. Function 30 searches for a
match, and changes the matched directory entry to contain the selected
indicators. Indicators fl' through f4' are not presently used, but

may be useful for applications programs, since they are not involved
in the matching process during file open and close operations.

Indicators £5' through £8' and t3' are reserved for future system
expansion,

(All Information Contained Herein is Proprietary to Digital Research.)

23

khkkdkkkhkhhhkkhkhhhhkhkhkhkhhhhkhkkhkhhhhkkkkhkhkkx

* *
* FUNCTION 31: GET ADDR(DISK PARMS) *
* *
khkkhkkhkhkhkhkhkkkhkhkhkkhkhhhkhkhhkhkhkhkhkhhkhkhkkkkkkk
* Entry Parameters: "
* Register C: 1FH ®
* *
* Returned Value: *
* Registers HL: DPB Address *
Ahkkhkkhhkhkhkhkhkhkkhkhkhkhkhkhhhkhkhhkhhkxkhkhkhkhkhkxkhhkkkk

The address of the BIOS resident disk parameter block is
returned in HL as a result of this function call. This address can be
used for either of two purposes., First, the disk parameter values can
be extracted for display and space computation purposes, or transient
programs can dynamically change the values of current disk parameters
when the disk environmment changes, if required. Normally, application
programs will not require this facility.

khkhkhkkkkkkhkhkkkkkhkhkhkhhhkhhhkhkhkhkhkhhkhhkhkkkkk

* *
* FUNCTION 32: SET/GET USER CODE *
* *
Ahkkhkhkhkhkhkrkhkhkhkkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkkkhk
* Entry Parameters: *
* Register C: 20H "
* Register E: OFFH (get) or *
* User Code (set) *
* *
* Returned Value: *
" Register A: Current Code or *
* (no value) *
Khkkkkkhkkhhkhkkhkhkkhhkhkhhkhkhkhhkhkhkhkhkhkhkkkhkhkkk

An application program can change or interrogate the currently

active user number by calling function 32, If register E = OFFH, then
the value of the current user number is returned in register A, where

the value is in the range # to 31. 1If register E is not @FFH, then
the current user number is changed to the value of E (modulo 32).

(All Information Contained Herein is Proprietary to Digital Research.)

24

hkhkkhhhkkhhkhkhkkhkkkhhkhrhkhkrhhhhkhhhkhhhkhkk

* *
* FUNCTION 33: READ RANDOM :
*

khkhhkhkhkhkhkhhkhkhkhhkhkkkkhkhhhhhhkxkhhkhkhkkkhhkkxk
* Entry Parameters: *
* Register C: 21H *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Return Code *

The Read Random function is similar to the sequential file read
operation of previous releases, except that the read operation takes
place at a particular record number, selected by the 24-bit value
constructed from the three byte field following the FCB (byte
positions r# at 33, rl at 34, and r2 at 35). Note that the sequence
of 24 bits 1is stored with least significant byte first (r#), middle
byte next (rl)., and high byte last (r2). CP/M does not reference byte
r2, except in computing the size of a file (function 35). Byte r2

must be zero, however, since a non-zero value indicates overflow past
the end of file,

Thus, the r@,rl byte pair is treated as a double-byte, or "word"
value, which contains the record to read. This value ranges from @ to
65535, providing access to any particular record of the 8 megabyte
file. In order to process a file using random access, the base extent
(extent @) must first be opened. Although the base extent may or may
not contain any allocated data, this ensures that the file is properly
recorded in the directory, and is visible in DIR regquests. The
selected record number is then stored into the random record field
(r@,rl), and the BDOS is called to read the record. Upon return from
the call, register A either contains an error code, as listed below,
or the value @@ indicating the operation was successful. In the
latter case, the current DMA address contains the randomly accessed
record. Note that contrary to the sequential read operation, the
record number 1is not advanced. Thus, subsequent random read
operations continue to read the same record.

Upon each random read operation, the logical extent and <current
record values are automatically set, Thus, the file can be
sequentially read or written, starting from the current randomly
accessed position, Note, however, that in this case, the last
randomly read record will be re-read as you switch from random mode to
sequential read, and the last record will be re-written as you switch
to a sequential write operation, You can, of course, simply advance
the random record position following each random read or write to
obtain the effect of a sequential I/0 operation,

Error codes returned in register A following a random read are
listed below.

(All Information Contained Herein is Proprietary to Digital Research.)

25

Pl reading unwritten data

82 (not returned in random mode)
#3 cannot close current extent

B4 seek to unwritten extent

#5 (not returned in read mode)

P6 seek past physical end of disk

Error code #1 and 04 occur when a random read operation accesses a
data block which has not been previously written, or an extent which
has not been created, which are equivalent conditions, Error 3 does
not normally occur under proper system operation, but can be cleared
by simply re-reading, or re-opening extent zero as long as the disk is
not physically write protected. Error code #6 occurs whenever byte r2
is non-zero under the current 2.0 release, Normally, non-zero return
codes can be treated as missing data, with 2zero return codes
indicating operation complete,

(All Information Contained Herein is Proprietary to Digital Research.)

26

khhkkhhkhhkhhkhkhhkhkhhkhhkkhhkhkhhkhkhkhkkhkkkkk

* *
* FUNCTION 34: WRITE RANDOM *
* *
khkkkhhkhkkhkhhhkhhhkhkhhkhkhkhkhkkhkhhkhkkhkhkkhkkhkkx
* Entry Parameters: "
* Register C: 22H "
% Registers DE: FCB Address »
* *
* Returned Value: "
* Register A: Return Code *
khkkkhkhdhkhhhkhhhhhkhkhkhhkhhhhhhhkhkhkhdhdhkhkkdhkkkk

The Write Random operation is initiated similar to the Read
Random call, except that data is written to the disk from the current
DMA address., Further, if the disk extent or data block which 1is the
target of the write has not yet been allocated, the allocation is
performed before the write operation continues, As in the Read Random
operation, the random record number is not changed as a result of the

write, The logical extent number and current record positions of the
file control block are set to correspond to the random record which is
being written, Again, sequential read or write operations can

commence following a random write, with the notation that the
currently addressed record is either read or rewritten again as the
sequential operation begins. You can also simply advance the random
record position following each write to get the effect of a seqguential
write operation, Note that in particular, reading or writing the last
record of an extent in random mode does not cause an automatic extent
switch as it does in sequential mode,

The error codes returned by a random write are identical to the
random read operation with the addition of error code 85, which
indicates that a new extent cannot be created due to directory
overflow.

(All Information Contained Herein is Proprietary to Digital Research.)

L4

khkhkkhkkkhkhkhhkhkhhkhhkkhkhkhhohkkkhkhkhkhkhkhhhkkkkk

* ’ *
¥ FUNCTION 35: COMPUTE FILE SIZE *
* *
***************************************; !
* Entry Parameters: *
* Register C: 23H *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Random Record Field Set *
khkkhkhdkhkhkkhkkhkhkkhkhkhhkhkhkhhkhkhkhkhkhkhkhkhkkdhkhik

When computing the size of a file, the DE register pair
addresses an FCB in random mode format (bytes r6, rl, and r2 are
present), The FCB contains an unambiguous file name which is used in
the directory scan. Upon return, the random record bytes contain the
“virtual" file size which is, in effect, the record address of the
record following the end of the file. if, following a call to
function 35, the high record byte r2 is 01, then the file contains the
maximum record count 65536, Otherwise, bytes rf and rl constitute a
l6-bit wvalue (r@ is the least significant byte, as before) which is
the file size. "

Data can be appended to the end of an existing file by simply
calling function 35 to set the rdndom record position to the end of

file, then performing a sequence of random writes starting at the
preset record address,

The virtual size of a file corresponds to the physical size when
the file is written sequentially. If, instead, the file was created
in random mode and "holes" exist in the allocation, then the file may
in fact contain fewer records than the size indicates. 1£f, for
example, only the last record of an eight megabyte file is written in
random mode (i,e., record number 65535), then the virtual size 1is

65536 records, although only one block of data is actually allocated.

(All Information Contained Herein is Proprietary to Digital Research.)

28

khkhkhkkkhkhkhkhhkhkhkhhhkhhhhkhhhkhhkhkhkhkhkhkhhkhkhhkkkk
* *
* FUNCTION 36: SET RANDOM RECORD *
* *
AhkhkkhkXhhkhkhh kb hkhkhk kA hhkhkkrkhhkkhkkkhhkhkkk

* Entry Parameters:
Register C: 24H
Registers DE: FCB Address

Returned Value:

Random Record Field Set

*
*
*
*
*
khkkhkkhkhkhhkhkhhhkhkhkhhkhkhhkhkkhhkhhhhkhkhkhhhkhhhkkx

*
*
*
*
*
*
*

The Set Random Record function causes the BDOS to automatically
produce the random record position from a file which has been read or
written sequentially to a particular point. The function can be
useful in two ways. ;

First, it is often necessary to initially read and scan a
sequential file to extract the positions of various "key" fields., As
each key is encountered, function 36 is called to compute the random
record position for the data corresponding to this key. If the data
unit size is 128 bytes, the resulting record position is placed into a
table with the key for later retrieval, After scanning the entire
file and tabularizing the keys and their record numbers, you can move
instantly to a particular keyed record by performing a random read
using the corresponding random record number which was saved earlier,
The scheme is easily generalized when variable record 1lengths are
involved since the program need only store the buffer-relative byte
position along with the key and record number in order to find the
exact starting position of the keyed data at a later time.

A second use of function 36 occurs when switching from a
sequential read or write over to random read or write, A file is
sequentially accessed to a particular point in the file, function 36
is called which sets theé record number, and subsequent random read and
write operations continue from the selected point in the file.

(All Information Contained Herein is Proprietary to Digital Research.)

29

3. A SAMPLE FILE-TO-FILE COPY PROGRAM,

The program shown below provides a relativeiy simple example of
file operations., The program source file is created as COPY.ASM using
the CP/M ED program and then assembled using ASM or MAC, resulting in
a "HEX" file, The LOAD program is the used to produce a COPY.COM file
which executes directly under the CCP. The program begins by setting
thé stack pointer to a 1local area, and then proceeds to move the
second name from the default area at @06CH to a 33-byte £file control
block called DFCB. The DFCB is then prepared for file operations by
clearing the current record field. At this point, the source and
destination FCB's are ready for processing since the SFCB at #05CH is
properly set-up by the CCP upon entry to the COPY program, ‘That 1is,
the first name is placed into the default fcb, with the proper fields

zerogd including the current record field at @¢7CH, The program
contlnues by opening the source file, deleting any exising destination
file, and then creating the destination file, If all this is

successful, the program loops at the label COPY until each record has

been read from the source file anhd placed into the destlnatlon file.
Upon completion of the data transfer, the destination file is closed

and the program returns to the CCP command level by jumping to BOOT.

sample file-to-file copy program
at the ccp level, the command
copy a:x.y b:u.v

copies the file named x.y from drive
a-to a file named u.v on drive b,

NG W WG WS We Mg N W we

0080 = boot equ 209 06h ; system reboot
p895 = bdos equ @805h ; bdos entry point
@@5¢c = fcbl equ 805ch ; first file name
g@5c = sfcb equ fcbl ; source fcb
do6c = fcbh2 equ @g@éch ; second file name
go8g = dbuff equ ‘gp8gh ; default buffer
0180 = tpa equ 2106h : beginning of tpa
[
p069 = printf equ 9 ; print buffer func#
b0t = openf equ 15 : open file func#
0610 = closef equ 16 : close file func#
PB13 = deletef equ 19 ; delete file funcé#
pol4g = readf eqgu 20 ; seguential read
B@o15 = writef equ 21 : sequential write
9pl6 = makef equ 22 i make file func#
Bloe org tpa ; beginning of tpa
21606 311bg2 1xi sp.stack; local stack
; move second file name to dfcb
$9103 Geld mvi c,1l6 : half -an fcb

(All Information Contained Herein is Proprietary to Digital Research.)

30

0105 116c@d 1xi d,fcb2 ;.source of move
0108 21dadl 1xi h,dfcb ; destination fcb
816b la nfcb: ldax d ; source fcb
f1lpc 13 inx d ; ready next
‘ g1ed 77 mov m,a ; dest fcb
d1l@e 23 inx h ; ready next
g19f @d dcr c s count 16...0
0110 c20bpf1l jnz mfcb ; loop 16 times
; name has been moved, zero cr
6113 af Xra a : a = @go6h
B114 32fa01 sta dfcber ;3 current rec = @

source and destination fcb's ready

“e we ws

0117 115c@0 1xi d,sfcb ; source file
flla cd69d1 call open ; error if 255
plld 118701 1xi d,nofile; ready message
8120 3c inr a ; 255 becomes 0§
$121 cc6ldl cz finis ; done if no file

; source file open, prep destination
8124 11da@1l 1xi d,dfcb ; destination
0127 cd7301 call delete ; remove if present
#l2a 11da@dl 1xi d,dfcb ; destination
8124 cds8201 call make : create the file
0136 119601 1xi d,nodir ; ready message
0133 3c inr a : 255 becomes 0

. 9134 cc6lil cz « finis ; done if no dir space

source file open, dest file open
copy until end of file on source

() e e wo ws

0137 115c68 copy: 1xi d,sfcb ; source
#13a cd7881 call read ; read next record
Pp1l3d b7 ora a ; end of file?
Bl3e c25101 inz eofile ; skip write if so

: not end of file, write the record
8141 116a01 1xi d,dfcb ; destination
0144 cd7d61 call write : write record
147 11a961 1xi d,space ; ready message
0l4a b7 ora a ; B0 if write ok
014b c46101 cnz finis ; end if so
Pl4e c33701 jmp copy ; loop until eof

[

eofile: ; end of file, close destination
@151 11dapl ixi d,dfcb ; destination
#8154 cdéedl call close ; 255 if error
0157 21bbg1l 1xi h,wrprot; ready message
@l5a 3c¢ inr a ; 255 becomes 060
@15b cc6101 cz finis ; shouldn't happen

~e we

copy operation complete, end

(All Information Contained Herein is Proprietary to Digital Research.)

31

P1l5e llccol lxi d,normal; ready message

7
finis: ; write message given by de, reboot

0161 0ed9 mvi e.,printt
0163 cdd500 call bdos ; write message
0166 c30000 jmp boot ; reboot system

system interface subroutines
(all return directly from bdos)

Q ~¢ Se ~o e

0169 dedf pen: mvi c,openf
Pl6b c30500 jmp bdos
fl6e Peld élose: mvi c,closef
0170 c30500 jmp bdos
6173 0el3 delete: mvi c,deletef
0175 c30500 jmp bdos
0178 feld fead: mvi c,readf
0l7a c30500 jmp bdos
0174 Gel5 Qrite: mvi c,writef
017f c30500 jmp bdos
0182 delb ﬁake: mvi c,makef
0184 c30500 jmp bdos
; console messages
0187 6e6f20fnofile: db 'no source file$'
0196 6e6f£209nodir: db 'no directory spaces$’
Pla9 6f7574fspace: db ‘out of data spaces$'
@1bb 7772695wrprot: db 'write protected?s$’
dlcc 636f700normal: db 'copy complete$'
: data areas
f1lda dfcb: ds 33 ; destination fcb
glfa = dfcbcr equ dfcb+32 ; current record
@1fb ds 32 ; 16 level stack
stack:
#21b end

Note that there are several simplifications in this particular
program, First, there are no checks for invalid file names which
could, for example, contain ambiguous references. This situation

could be detected by scanning the 32 byte default area starting at
location @@5CH for ASCII guestion marks. A check should also be made

to ensure that the file names have, in fact, been included (check

locations @@5DH and PB6DH for non-blank ASCII characters). Finally, a
check should be made to ensure that the source and destination file

names are different. A speed improvement could be made by buffering
more data on each read operation, One could, for example, determine

(All Information Contained Herein is Proprietary to Digital Research.)

32

the size of memory by fetching FBASE from location #0@6H and use the
entire remaining portion of memory for a data buffer. 1In this case,
the programmer simply resets the DMA address to the next successive
128 byte area before each read. Upon writing to the destination file,
the DMA address is reset to the beginning of the buffer and
incremented by 128 bytes to the end as each record is transferred to
the destination file.

(A1l Information Contained Herein is Proprietary to Digital Research.)

33

4, A SAMPLE FILE DUMP UTILITY,

The file dump program shown below is slightly more complex than
the simple copy program given in the previous section., The dump
program reads an input file, specified in the CCP command 1line, and
displays the content of each record in hexadecimal format at the
console, Note that the dump program saves' the CCP's stack upon entry,
resets the stack to a local area, and restores the CCP's stack before
returning directly to the CCP. Thus, the dump program does not
perform and warm start at the end of processing.

; DUMP program reads input file and displays hex data

.
!

0100 org 10 6h
poas = bdos equ @0 85h ;dos entry point
001 = cons egu 1 ;read console
2002 = typef equ 2 ;type function
PB09 = printf equ 9 ;buffer print entry
pogb = brkf equ 11 ;break key function (true if char
pootE = openf equ 15 ;f£ile open
pBl4 = readf equ 20 ;read function
6B5¢c = fcb eqgu 5¢ch ;file control block address
pe8e = buff equ 80h ;input disk buffer address
; non graphic characters
pgga = cr egu @dh ;jcarriage return
goga = 1t egu Pah ;line feed
H file control block definitions
gG5¢c = fcbdn equ fcb+d :disk name
g@54 = fcbfn equ fcb+l ;file name
ga65 = fcbft equ fcb+9 ;disk file type (3 characters)
0068 = fcbrl eqgu fcb+l2 ;file's current reel number
po6b = fcbrc equ fcb+l5 ;file's record count (8 to 128)
égo7c = fcber equ fcb+32 :current (next) record number (8
gg7d = fcbln equ fcb+33 ;fcb length
; set up stack
0100 2100600 1xi h,?
8163 39 dad sp
; entry stack pointer in hl from the ccp
8104 221502 shld oldsp
H set sp to local stack area (restored at finis)
9187 315762 1xi sp,stktop
; read and print successive buffers
BlPda cdcldl call setup ;set up input file
plOd feff cpi 255 :255 if file not present
010f c21bgl jnz openok ;skip if open is ok
: file not there, give error message and return
P112 11£301 1xi d,opnmsg
9115 cd9chl call err
9118 c35101 jmp finis ;to return

-e

(All Information Contained Herein is Proprietary to Digital Research.)

34

openok: ;open operation ok, set buffer index to end

@1lb 3e88 mvi a,86h
P11d 321362 sta ibp ;set buffer pointer to 88h
: hl contains next address to print
® 6120 210000 1xi h, o ;start with 0000
gloop:
0123 e5 push h ;save line position
§124 cda20l call gnb
0127 el pop h ;jrecall line position
0128 da5101 jc finis ;carry set by gnb if end file
B12b 47 mov b,a
: print hex values
: check for line fold
@l2c 74 mov a,l
@124 e60f ani @fh ;check low 4 bits
012f c24401 jnz nonum
; print line number
0132 cd7201 call crlif
: check for break key
3135 cd59491 call break
: accum 1lsb = 1 if character ready
$138 @F rec ;into carry
#139 da51401 jc finis ;don't print any more
@1l3c 7c mov a,h
#13d cd8fgl call phex
$146 74 mov a,l
. P141 cds8fal call phex
g nonum:
#2144 23 inx h :to next line number
8145 3e20 mvi a,' !
#147 cd6501 call pchar
gl4a 78 mov a,b
#14b cd8fgl call phex
Blde c32301 jmp gloop
finis:
; end of dump, return to ccp
H (note that a jmp to #00Gh reboots)
9151 cd7201 call crlf
§154 231502 lhld oldsp
@157 £9 sphl
; stack pointer contains ccp's stack location
#8158 c9 ret ;to the ccp
subroutines

T'se e wo e

reak: j;check break key (actually any key will do)

#8159 e5d5c5 push h! push d! push b; enviromment saved
#15c Qelb mvi c,brkf .
B1l5e cdés500 call, bdos

p161 cldlel pop b! pop d! pop h; enviromment restored

(All Information Contained Herein is Proprietary to Digital Research.)

35

164 c9 ret

’
pchar: ;print a character

0165 e5d5c5 push h! push d! push b; saved
0168 Oed2 mvi c,typef
Bléa 5f mov e,a
P16b cde500 call bdos
@lée cldlel pop b! pop d! pop h; restored
0171 c9 ret
crif:
0172 3ebd mvi a,cr
0174 cde501 call pchar
0177 3eba mvi a,lf
0179 cd6501 call pchar
@l7c c9 ret
pnib: ;Pprint nibble in reg a
0174 e6Bf ani 0fh ;low 4 bits
017f feba cpi 10
0181 428901 jnc pl@d
: less than or equal to 9
P184 c630 adi ‘g’
0186 c38bM1l jmp prn
: greater or equal to 10
0189 c637 plo: adi ‘a' - 10
$18b cd6501 prn: call pchar
#18e c9 ret
phex: ;print hex char in reg a
018f £5 push psw
0190 0f Lo
#191 Of LEC
8192 0f Lre
0193 Of rrc
#0194 cd7d01 call pnib ;print nibble
0197 £1 pop psw
0198 cd7d401 call pnib
#19b c9 ret
err: ;print error message
: d,e addresses message ending with "§"
P19c 0eld9 mvi ¢.printE ;print buffer function
P19e cde500 call bdos
@lal c9 ret
gnb: ;get next byte
Pla2 3al302 lda ibp
@la5 fe80 eni 80h
@la7 c2b3d1 jnz go

read another buffer

—e weo

(All Information Contained Herein is Proprietary to Digital Research.,)

36

~e

@laa cdcefl call diskr

Plad b7 ora a ;zero value if read ok
Plae cab3@l jz gd ;for another byte
. ; end of data, return with carry set for eof
p1lbl 37 stc
91b2 c9 ret
gb: ;read the byte at buff+reg a
P1b3 5f mov e,a ;1s byte of buffer index
01b4 1600 mvi a,0 ;double precision index to de
#1b6 3¢ inr a : index=index+1
@1b7 321302 sta ibp ;back to memory

pointer is incremented
save the current file address

e weo

@lba 218000 1xi h,buff
@1lbd 19 dad d
; absolute character address is in hl
f@1lbe 7e mov a,m
: byte is in the accumulator
@1bf b7 ora a ;reset carry bit
f1lcld c9 ret
setup: ;set up file
: open the file for input
@lcl af Xra a ;zero to accum
@lc2 327c00 sta fcber ;clear current record
@1lc5 115c00 1xi d; Ecb
‘ 01lc8 Qebf mvi c,openf
@lca cde500 call bdos
: 255 in accum if open error
Plcd c9 ret
’
diskr: ;read disk file record
@lce e5d5c5 push h! push d! push b
P1d1 115c@@ 1xi d.téb
0144 Peld mvi c,readf
#1d6 cde500 call bdos
9149 cldlel pop b! pop d! pop h
#ldc c9 ret
3 fixed message area
#1dd 46494cPlsignon: db 'file dump version 2.0$°
01f3 @dBdadelopnmsg: db cr,1f,'no input file present on disk$'
3 variable area
9213 ibp: ds 2 ;input buffer pointer
8215 oldsp: ds 2 ;entry sp value from ccp
’
: stack area
9217 ds 64 ;reserve 32 level stack
stktop:
8257 end

(All Information Contained Herein is Proprietary to Digital Research.)

37

5. A SAMPLE RANDOM ACCESS PROGRAM.

This manual is concluded with a rather extensive, but complete
example of random access operation, The program listed below performs
the simple function of reading or writing random records upon command
from the terminal. Given that the program has been created,

assembled, and placed into a file labelled RANDOM,COM, the CCP level
command:

RANDOM X.DAT

starts the test program. The program looks for a file by the name
X.DAT (in this particular case) and, if found, proceeds to prompt the
console for input, If not found, the file 1is <created before the

prompt is given. Each prompt takes the form
next command?

and is followed by operator input, terminated by a carriage return.
The input c¢ommands take the form

nw nR Q

where n is an integer value in the range # to 65535, and W, R, and Q
are simple command characters corresponding to random write, random
read, and guit processing, respectively. If the W command is issued,
the RANDOM program issues the prompt

type data:

The operator then responds by typing up to 127 characters, followed by
a carriage return. RANDOM then writes the character string into the
X.DAT file at record n. If the R command is issued, RANDOM reads
record number n and displays the string value at the console. If the
Q command is issued, the X.DAT file is closed, and the program returns
to the console command processor. In the interest of brevity, the
only error message is

error, try again

The program begins with an initialization section where the
input file is opened or created, followed by a continuous loop at the
label "ready" where the individual commands are interpreted. The
default file control block at @05CH and the default buffer at G680H
are used in all disk operations, The utility subroutines then follow,
which contain the principal input 1line processor, called "readc."
This particular program shows the elements of random access

processing, and can be used as the basis for further program
development.

(All Information Contained Herein is Proprietary to Digital Research.)

38

0100

pooo
0005

0001
pp02
0009
dooa
godc
0g08f
0010
0016
021
0022

@B5c
0074
607t
0080

popd
g00a

0100

0103
8165
0108
g10a

g10d
0110
6113

8116
2118
P11b
glle
g11f

(A1l Information Contained Herein is Proprietary to Digital Research,)

LI T | I T | A |

31bco

defc
cdes59
fe2d
d2160

111b@
cddaf
c3000

Ped f
115cH
cdgse
3¢

c2370

ekkhhkhkhkkhkhkhhhhhkhkkhhhhkkAhkhkhkhkhhkhhhkhkhkhhhhkkhhkhhhkkkhkd

’

.* *

’

;* sample random access program for cp/m 2.0 "

I* *

;***
org 1006h ~;base of tpa

;

reboot equ 0000h ;system reboot

bdos equ @005h ;bdos entry point

éoninp egu 1 ;console input function

conout equ 2 ;console output function

pstring equ 9 ;print string until °'S$°

rstring equ 10 ;read console buffer

version equ 12 ;jreturn version number

openf egu 15 ;file open function

closef equ 16 ;close function

makef equ 22 smake file function

readr equ 33 ;read random

writer equ 34 ;write random

fcb equ @85ch ;default file control block

ranrec equ fcb+33 ;random record position

ranovf equ fcb+35 ;high order (overflow) byte

buff egu 0080h sbuffer address

H

cr equ gdh ;carriage return

1f eqgu @ah ;line feed

;***

'R *

’

;¥ load SP, set-up file for random access L

o % *

;***
1xi sp,stack

version 2.07?

~-e

mvi c,version
call bdos
cpi 20h ;version 2.0 or better?
jnc versok
: bad version, message and go back
1xi d,badver
call print
jmp reboot
’
versok:
: correct version for random access
mvi c,openf ;open default fcb
1xi d,fcb
call bdos
inr a ;err 255 becomes zero
jnz ready

~e we

cannot open file, so create it

39

0122 gels mvi c,makef

3124 115cH ixi d,fcb

8127 cd@s5e call bdos

Bl2a 3c inr a serr 255 becomes zero
012b c2370 jnz ready

-e weo

cannot create file, directory full

@l2e 113a@ 1xi d,nospace

9131 cddag call print

9134 c3000 jmp reboot ;back to ccp
;***
o« % *
;* loop back to "ready" after each command *
«% *

ekkhhhkhhkhkhkkkhkhkhhkhhkhkhkkkkhkhkhhkhkhkrhhkhkhkkhkkkhhhkhhhkhkhkhkk

3

-

ready:
H file is ready for processing

8137 cde58 call readcom ;read next command

@l3a 22740 shld =~ ranrec ;store input record#

§13d 217£€0 1xi h,ranovf

0140 3600 mvi m,d ;clear high byte if set

#1142 fe51 cpi 'Q' ;quit?

#1444 c2560 jnz notqg
: quit processing, close file

3147 Gelo mvi c,closef

0149 115c0 1xi d,fch

0l4c cdesg call bdos

P14f 3c inr a ;serr 255 becomes 0

8150 cabgg jz error ;error message, retry

8153 c3000 jmp reboot ;back to ccp
;***
ok *
:* end of quit command, process write *
« % *
;***
notq:
; not the guit command, random write?

B156 fe57 cpi ‘w'

#2158 c2890 jnz notw
: this is a random write, £ill buffer until cr

@15b 11446 1xi d,datmsg

@l5e cddag call '’ print ;data prompt

glel Qe7f mvi c,127 ;up to 127 characters

@163 218400 1xi h,buff ;destination
rloop: ;read next character to buff

0166 c5 push b ;save counter

8167 e5 push h ;next destination

#0168 cdc2@ call getchr j;character to a

glé6b el pop h srestore counter

(A1l Information Contajined Herein is Proprietary to Digital Research.)

49

pl6c cl pop b ;restore next to fill

#led feld cpi cr ;end of line?

Pl6f ca780 Tz erloop
: not end, store character

. 6172 77 mov m,a

@173 23 inx h ;next to fill

9174 04 dcr o] ;counter goes down

0175 c2660 jnz rloop ;end of buffer?
erloop:
H end of read loop, store 00

0178 3600 mvi m,Q
’
: write the record to selected record number

@gl7a Be22 mvi c,writer

@1l7c 115cH 1xi d,fcb

B17f cdes5e call bdos

9182 b7 ora a serror code zero?

#0183 c2b9d jnz error ;message if not

8186 c3370 jmp ready ; for another record
;***
'] *
:* end of write command, process read *
o % *
;***
notw:
: not a write command, read record?

0189 fe52 cpi 'R

#18b c2b9d jnz error ;skip if not

‘ ; read random record

f1l8e fe2l mvi c,readr

0190 115cH 1xi d,fcb

9193 cdese call bdos

0196 b7 ora a ;return code 00?

0197 c2b9d jnz error
: read was successful, write to console

#19a cdcfo call crlf ;new line

8194 Ge80 mvi c,128 smax 128 characters

P19f 21800 1xi h,buff ;next to get
wloop:

Pla2 7e mov a,m ;next character

#la3 23 inx h ;next to get

flad e67f ani 7fh ;mask parity

#la6 ca370 jz ready ;for another command if 00

Pla9 c5 push b ;save counter

flaa e5 push h ;save next to get

Plab fe20 cpi 5 3 ;graphic?

@lad d4c8e cnc putchr ;skip output if not

f1b@d el pop h

#1lbl cl pop b

#1b2 @d dcr c ;count=count-1

@1b3 c2a2@ jnz wloop

#1b6 c3370 jmp ready

(All Information Contained Herein is Proprietary to Digital Research.)

41

**************************‘************************
* *
* end of read command, all errors end-up here *
* *
*

Khkhdhhhhhkhkkhkkkhkhhhhhhkhhkkkkhhhhhkhhhkhkhkhhhhkrkhk

we We wE we we ws we

error:

#1b9 11590 1xi d,errmsg

@1lbc cddad call print

@1bf c3370 jmp ready
;***
% %
;¥ utility subroutines for console i/o *
o % *
;***
getchr:

;read next console character to a

glc2 BeBl mvi c,coninp

#lcd cdgs50 call bdos

#lc7 c9 ret
putchr:

;write character from a to console

§1lc8 GeB?2 mvi ¢,conout

@lca 5f mov e,a :character to send

@lcb cdgse call bdos :send character

flce c9 ret
crlf:

;send carriage return line feed

flcf 3efd mvi a,cr ;jcarriage return
2141 cdc8g call putchr
9144 3efa mvi a,lf :line feed
#1d6 cdc8g call putchr
#149 c9 ret

print:

;print the buffer addressed by de until $

glda d5 push d
#1ldb cdcfs call crlf
@lde dl pop d ;new line
g1af 0eB9 mvi c,pstring
flel cdfsg call bdos ;print the string
#led c9 ret

readcom:

:read the next command line to the conbuf

@le5 116b0@ 1xi d,prompt
fle8 cddad call print ;command?
gleb gefa nvi c,rstring
fled 117a@ 1xi d,conbuf
01f0 cdese call bdos ;read command line

command line is present, scan it

-e

(All Information Contained Herein is Proprietary to Digital Research.)

42

P1f3
p1fé6
01£9
Bilfa
P1fb
Blfc

@1fd
Gg1ff
0201

2204
3285
8206
9207
p208
0209
g20a
g20b
82ac
g 20f
0210

9213
8215
6217

. $218
g2la

621b
023a
g 244
0259

B26b

21000 Ixi h,? ;start with 0000

117c0 1xi d,conlin;command line

la readc: 1ldax d ;next command character

13 inx d ;to0 next command position

b7 ora a ;cannot be end of command

c8 rz
; not zero, numeric?

d630 sui g

fega cpi 18 ;carry if numeric

d213¢ jnc endrd
; add-in next digit

29 dad h ;%2

44 mov c,l

44 mov b,h :bc = value * 2

29 dad h ;%4

29 dad h ;%8

g9 dad b %2 + %8 = *1¢§

85 add 1 ;+digit

6f mov 1l,a

d2£90 jnc readc ; for another char

24 inr h ;overflow

c3£90 jmp. readc ;for another char
endrd:
: end of read, restore value in a

c630 adi 'g!' : command

fe6l cpi 'a' stranslate case?

ds rc .
; lower case, mask lower case bits

e65f ani 101$1111b

c9 ret
;*********************‘******************************
e % *
7
;* string data area for console messages *
.. % ¥ *
;*******************************"k*******************
badver:

536£79 db ‘sorry, you need cp/m version 2$°'
nospace:

4e6£29 db 'no directory space$’
datmsg:

547970 db 'type data: s
errmsg:

457272 db ‘error, try again.s$'
prompt:

46570 db 'next command? S$°'

r

(All Information Contained Herein is Proprietary to Digital Research.)

43

;***

o % *
;* fixed and variable data area *
ok *
;***
g27a 21 conbuf: db conlen ;length of console buffer
g27b consiz: ds 1 ;resulting size after read
g27c conlin: ds 32 ;length 32 buffer
p021 = conlen equ $-consiz
629¢c ' ds 32 116 level stack
stack:
@ 2bc end

Again, major improvements could be made to this particular
program to enhance its operation, In fact, with some work, this
program could evolve into a simple data base management system. One
could, for example, assume a standard record size of 128 bytes,
consisting of arbitrary fields within the record. A program, called
GETKEY, could be developed which first reads a sequential file and
extracts a specific field defined by the operator. For example, the
command

GETKEY NAMES.DAT LASTNAME 10 20

would cause GETKEY to read the data base file NAMES.DAT and extract
the "LASTNAME" field from each record, starting at position 18 and

ending at character 20, GETKEY builds a table in memory consisting of
each particular LASTNAME field, along with its 16-bit record number
location within the file. The GETKEY program then sorts this list,
and writes a new file, called LASTNAME.KEY, which is an alphabetical

list of LASTNAME fields with their corresponding record numbers,
(This list is called an "“inverted index" 1in information retrieval

parlance,)

Rename the program shown above as QUERY, and massage it a bit so
that it reads a sorted key file into memory. The command 1line might
appear as:

QUERY NAMES.DAT LASTNAME,.KEY

Instead of reading a number, the QUERY program reads an alphanumeric
string which 1is a particular key to find in the NAMES.DAT data base,
Since the LASTNAME.KEY list is sorted, you can find a particular entry
quite rapidly by performing a "binary search," similar to looking up a
name in the telephone book. That is, starting at both ends of the
list, you examine the entry halfway in between and, if not matched,
split either the upper half or the lower half for the next search,
You'll gquickly reach the item you're looking for (in log2(n) steps)
where you'll find the corresponding record number, Fetch and display
this record at the console, just as we have done in the program shown
above,

(All Information Contained Herein is Proprietary to Digital Research.)

44

At this point you're just getting started. With a 1little more
work, you <can allow a fixed grouping size which differs from the 128
byte record shown above. This is accomplished by keeping track of the
record number as well as the byte offset within the record. Knowing
the group size, you randomly access the record containing the proper
group, offset to the beginning of the group within the record read
sequentially until the group size has been exhausted.

Finally, you can improve QUERY considerably by allowing boolean
expressions which compute the set of records which satisfy several
relationships, such as a LASTNAME between HARDY and LAUREL, and an AGE
less than 45. Display all the records which fit this description,
Finally, if your 1lists are getting too big to fit into memory,
randomly access your key files from the disk as well, One note of
consolation after all this work: if you make it through the project,
you'll have no more need for this manual!

(All Information Contained Herein is Proprietary to Digital Research.)

45

6. SYSTEM FUNCTION SUMMARY,

FUNC FUNCTION NAME INPUT PARAMETERS

OUTPUT RESULTS

) System Reset none none

b Console Input none A = char

2 Console Qutput E = char none

3 Reader Input none A = char

4 Punch Output E = char none

5 List Output E = char none

6 Direct Console I/0 see def see def

7 Get I/O Byte none A = IOBYTE

8 Set I/0 Byte E = IOBYTE none

9 Print String DE = .Buffer none

10 Read Console Buffer DE = ,Buffer see def
11 Get Console Status none A = 00/FF

12 Return Version Number none HL= Version*
13 Reset Disk System none see def

14 Select Disk E = Disk Number see def

B Open File DE = ,FCB A = Dir Code
16 Close File DE = .FCB A = Dir Code
17 Search for First DE = .FCB A = Dir Code
18 Search for Next none A = Dir Code
19 Delete File DE = ,FCB A = Dir Code
20 Read Sequential DE = ,FCB A = Err Code
21 Write Sequential DE = .FCB A = Err Code
22 Make File DE = ,FCB A = Dir Code
23 Rename File DE = ,FCB A = Dir Code
24 Return Login Vector none HL= Login Vect*
25 Return Current Disk none A = Cur Disk#
26 Set DMA Address DE = .DMA none

27 Get Addr(Alloc) none HL= ,Alloc
28 Write Protect Disk none see def
29 Get R/0 Vector none HL= R/O Vect*
30 Set File Attributes DE = ,FCB see def
31 Get Addr(disk parms) none HL= .DPB
32 Set/Get User Code see def see def
33 Read Random DE = ,FCB A = Err Code
34 Write Random DE = .FCB A = Err Code
35 Compute File Size DE = ,FCB rg, rl, r2
36 Set Random Record DE = ,FCB rg, rl, r2

* Note that A = L, and B = H upon return

(All Information Contained Herein is Proprietary to Digital Research.)

46

11 DIGITAL RESEARCH

.Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M 2.0 USER'S GUIDE
FOR CP/M 1.4 OWNERS

COPYRIGHT (e) 1979

DIGITAL RESEARCH

Copyright

Copyright (¢) 1979 by Digital Research. All rights reserved.
No part of this publication mav be reproduced, transmitted,
transeribed, stored in a retrieval system, or translated into
any language or computer language, in any form or by anv
means, electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written permission of
Digital Research, Post Office Box 579, Pacific Grove,
California 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically diseclaims any
implied warranties of merchantability or fitness for any parti-
cular purpose. Further, Digital Research reserves the right
to revise this publication and to make changes from time to
time in the content hereof without obligation of Digital
Research to notify any person of such revision or changes.

Trademarks

CP/M is a registered trademark of Digital Research. MP/M,
MAC, and SID are trademarks of Digital Research.

CP/M 2.0 USER'S GUIDE FOR CP/¥ 1.4 OWNERS

Cooyright (c) 1979
Digital Researcn, Box 579
Pacific Grove, California

An Overview of CP/M 2.0 rFacilities
Ugser Interface . ; s s = = = = = s s « » »
Console Command Processor (CCP) Interface
STAT Enhancements . . . ¢ ¢ ¢ ¢« ¢« &« « o &
PIP Enhancements : + « « s s » s & & s »
ED Enhancements ., . « « ¢« » » = # = = » &
The 2SU8 FPunction . « « « « s = » & & & s
3D0S Interface Conventions . ,
CP/M 2.6 Memory Organization

3I0S DIifferences . v v v o o o o o o o o

27

28

i

1. AN OVERVIEW OF CP/M 2.0 FACILITIES.

CpP/®m 2.9 is a high-performance single-console operating system
which wuses table driven technigues to allow field reconfiguration to
match a wide variety of disk capacities. All of the fundamental file
restrictions are removed, while maintaining upward compatibility from
previous versions of release 1, Features of CP/M 2.0 1include field
specification of one to sixteen logical drives, eacn containing up to
eight megabytes, Any particular file can reach the full drive size
with the <capaoility to expand to thirty-two megabytes in future
releases., The directory size can be field configured to contain any
reasonable number of entries, and each file is optionally tagged with
read/only and system attributes. Users of CP/M 2. are physically
separated oy user numbers, with facilities for file copy operations
from one user area to another. Powerful relative-record random access
functions are present in CP/M 2.8 which provide direct access to any
of the 65536 records of an eight megapyte file,

All disk-dependent portions of CP/M 2.0 are placed 1into a
BIOS-resident "disk parameter block" which is either hand coded or
produced automatically using the disk definition macro library
provided with CP/M 2.0. The end user need only specify the maximum
numoer of active disks, the starting and ending sector numbers, the
data allocation size, the maximum extent of the 1logical disk,
directory size information, and reserved track values. The macros use
this intormation to generate the appropriate tables and table
references for use during CP/M 2.0 operation. Deblocking information
is also provided wnhich aids in assembly or disassembly of sector sizes
wnich are multiples of the fundamental 128 byte data unit, and the
system alteration manual includes general-purpose supbroutines which
use the tnis deblocking information to take advantage of larger sector
sizes. Use of these subroutines, together with the table driven data
access algorithms, make CP/M 2.0 truly a universal data management
system.

File expansion is achieved by providing up to 512 1logical file
extents, where each logical extent contains 16K bytes of data. CP/M
2.9 is structured, nowever, so that as much as 128K bytes of data is
addressed by a single physical extent (corresponding to a single
directory entry), thus maintaining compatibility with orevious
versions while taking full advantage of directory space.

Random access facilities are present in CP/M 2.0 which allow
immediate reference to any record of an eight megabyte file. Using
CP/M's unique data organization, data blocks are only allocated when
actually required and movement to a record position requires little
search time. Sequential file access is upward compatible from earlier
versions to the full eight megaoytes, while random access
compatibility stops at 512K byte files. Due to CP/M 2.0's simpoler and
faster random access, application brogrammers are encouraged to alter
their programs to take full advantage of the 2.0 facilities.

Several CP/M 2.0 modules and utilities have improvements which
cqrrespond to the enhanced file system. STAT and PIP both account for
file attributes and user areas, while the CCP vprovides a "login"

(All Information Contained Herein is Proprietary to Digital Research.)

1

function to change from one user area to anotner. The CCP also
formats directory displays in a more convenient manner and accounts
for both CRT and hard-copy devices in 1its enhanced 1line editing
functions.

The sections below point out the individual differences between
cP/M 1.4 and CP/M 2.8, with the understanding that the reader is
either familiar with CP/M 1.4, or has access to the 1.4 manuals.
Additional information dealing with CP/M 2.8 I/O system alteration is
presented in the Digital Research manual "CP/M 2.9 Alteration Guide."

(All Information Contained Herein is Proprietary to Digital Research.)

2

2. USER INTERFACE.

Console line processing takes CRT-type devices into account with
three new control characters, shown with an asterisk in the list below
(the symbol “ctl" below indicates that the control key 1is
simultaneously depressed):

rub/del removes and ecnoes last character

ctl-C reboot when at beginning of line

ctl-E physical end of line

ctl-H bpackspace one cnharacter position¥*

ctl-J (line feed) terminates current input*
ctl-M (carriage return) terminates input
ctl-R retype current line after new line
ctl-U remove current line after new line
ctl-X Dbackspace to beginning of current line¥*

In particular, note that ctl-H produces the proper backspace overwrite
function (ctl-H can be changed internally to another character, such
as delete, through a simple single byte change). Further, the line
2ditor keeps track of the current prompt column position so that the
operator can properly align data input following a ctl-U, ctl-R, or
ctl-X command.

(All Information Contained Herein is Proprietary to Digital Research.)

3

3. CONSOLE COMMAND PROCESSOR (CCP) IWTERFACE.

There are four functional differences between CP/M 1.4 and CP/M
2.0 at the console command processor (CCP) level, The CCP now
displays directory information across the screen (four elements per
line), the USER command is present to allow maintenance of separate
files in the same directory, and the actions of the "ERA *.,*" and
"SAVE" commands have changed. The altered DIR format is
self-explanatory, while the USER command takes the form:

USER n

where n is an integer value in the range 0 to 15. Upon cold start,
the operator is automatically "logged" into user area number ¥, which
is compatible with standard CP/M 1.4 directories, The operator may
issue the USER command at any time to move to another logical area
within the same directory. Drives which are 1logged-in while
addressing one user number are automatically active when the operator
moves to another user numper since a user number is simply a prefix
which accesses particular directory entries on the active disks.

The active wuser number is maintained until changed by a
subseguent USER command, or until a cold start operation when user @
is again assumed.

Due to the fact that user numbers now tag individual directory
entries, the ERA *.,* command has a different effect., 1In version 1.4,
this command can be used to erase a directory whicn has "garbage”
information, wverhaps resulting from use of a diskette under another
operating system (heaven forbial). In 2.0, however, the ERA *_,*
command affects only the current user number, Thus, it is necessary
to write a simple utility to erase a nonsense disk (the program simply
writes the hexadecimal pattern E5 throughout the disk).

The SAVE command in version 1.4 allows only a single memory save
operation, with the potential of destroying the memory image due to
directory operations following extent boundary changes. Version 2.3,
nowever, does not perform directory operations 1in user data areas
after disk writes, and thus the SAVE operation can be used any number
of times without altering the memory image.

(All Information Contained Herein is Proprietary to Digital Research.)

4

4, STAT ENHANCEMENTS.

The STAT program has a number of additional functions which
allow disk parameter display, user number display, and file indicator
manipulation. The command:

STAT VAL:

produces a summary of the available status commands, resulting in the
output:

Temo R/O Disk: d:=R/0

Set Indicator: d:filename.typ $R/0 $R/W $SYS $DIR
Disk Status : DSK: d:DSK:

User Status : USR:

Iobyte Assign:

(list of possible assignments)

whicn gives an instant summary of the possible STAT commands. The
command form:
STAT d:filename.tyo $S

wnere "d:" is an optional drive name, and "filename.typ"” 1is an
unambiguous or ambiguous file name, ©vroduces the output display
format:

Size Recs B3ytes Ext Acc

43 43 6k 1 R/O A:ED.COM
55 55 12k 1 R/O (A:PIP.COM)
©55306 128 2k 2 R/W A:X.DAT

where tne §S parameter causes the "Size" field to be disvplayed
(without the §S5, the Size field is skipped, but the remaining fields
are displayed). The Size field 1lists the wvirtual file size 1in
records, while the "Recs" field sums the number of virtual records in
each extent., For files constructed seqguentially, the Size and Recs
fields are identical. The "Bytes" field lists the actual number of
bytes allocated to the corresponding file. The minimum allocation
unit is determined at configuration time, and thus the number of bytes
corresponds to the record count vlus the remaining unused space in the
last allocated block for sequential files. Random access files are
given data areas only when written, so the Bytes field contains the
only accurate allocation figure. 1In the case of random access, the
Size field gives the logical end-of-file record position and the Recs
field counts the 1logical records of each extent (each of these
extents, however, may contain unallocated "holes" even though they are
added into the record count). The "Ext" field counts the number of
logical 16K extents allocated to the file, Unlike version 1.4, the
Ext count does not necessarily correspond to the number of directory
entries given to the file, since there can be up to 128K pbytes (8
logical extents) directly addressed by a single directory entry,
depending upon allocation size (in a special case, there are actually
256K bytes which can be directly addressed by a physical extent).

The "Acc" field gives the R/O0 or R/W access mode, which 1is
changed wusing the commands shown below. Similarly, the parentheses
(All Information Contained Herein is Proprietary to Digital Research.)

5

shown around the PIP.COM file name indicate that it has the “system”
indicator set, so that it will not be listed in DIR commands. The
four command forms

STAT d:tilename.typ $R/O
STAT d:filename.typ $R/W
STAT d:filename.typ $SYS
STAT d:filename.typ SDIR

set or reset various permanent file indicators, The R/0 indicator
places the file (or set of files) in a read-only status until changed
by a subseguent STAT command. The R/0 status 1is recorded in the
directory with tne file so that it remains R/0 through intervening
cold start operations. The R/W indicator places the file in a
permanent read/write status. The SYS indicator attaches the system
indicator to the file, while the DIR command removes the system
indicator. The “filename.typ" may be ambiguous or unambiguous, but in
either <case, the files whose attributes are changed are listed at the
console when the change occurs. The drive name denoted by "d:" is
optional.

Wwhen a file is marked R/0O, subsequent attempts to erase or write
into the file result in a terminal BDOS message

B8dos Err on d: File R/O

The BDOS then waits for a console input before performing a subsequent
warm start (a “"return" is sufficient to continue). The command form

3TAT d:DSK:

lists the drive characteristics of the disk named by "d:" which is in
the range A:, B:, ..., P:. The drive characteristics are listed in
the format:

d: Drive Characteristics
©65536: 128 Byte record Capacity
8192: Kilopyte Drive Capacity
128: 32 Byte Directory Entries
@: Checked Directory Entries
1024: Records/ Extent
128: Records/ Block
58: Sectors/ Track
2: Reserved Tracks

where "d:" is the selected drive, followed by the total record
capacity (65536 1is an 8 megabyte drive), followed by the total
capacity listed in Kilobytes., The directory size 1is 1listed next,
followed by the "checked" entries. The number of checked entries is
usually identical to the directory size for removable media, since
this mechanism is used to detect changed media during CP/M operation
without an intervening warm start, For fixed media, the number is
usually =zero, since the media is not changed without at least a cold
or warm start., The number of records per extent determines the
addressing capacity of each directory entry (1924 times 128 bytes, or

(All Information Contained Herein is Proprietary to Digital Research.)

6

128K in the example above). The number of records per block shows the
basic allocation size (in the example, 128 records/block times 128
bytes per record, or 16K bpytes per bplock). The listing is then
followed by the number of physical sectors per track and the number of
reserved tracks. For logical drives whicn share the same physical
disk, the number of reserved tracks may be qguite large, since this
mechanism is used to skip lower-numbered disk areas allocated to other
logical disks. The command form

STAT DSK:

oroduces a drive characteristics tapble for all currently active
drives. The final STAT command form is

STAT USR:

which produces a list of the user numbers which have files on the
currently addressed disk. The display format is:

Active User : @
Active fFiles: 9 1 3

where the first line lists the currently addressed user number, as set
by the last CCP USER command, followed by a 1list of wuser numbers
scanned from the current directory. 1In the above case, the active
user numpber is ¥ (default at cold start), with three user numbers
whicn have active files on the current disk. The operator can
subsequently examine the directories of the other wuser numbers by
logging-in with USER 1, USER 2, or USER 3 commands, followed by a DIR
command at the CCP level.

(All Information Contained Herein is Proprietary to Digital Research.)

7

5. PIP ENHANCEMENTS.

PIP provides three new functions which account for the features
of CpP/M 2.0. All three functions take the form of file parameters
which are enclosed in square brackets following the appropriate file
names., The commands are:

Gn Get File from User number n
(n in the range 4 - 15)

W Write over R/O files without
console interrogation

R Read system files

The G command allows one user area to receive data files from another.

Assuming the operator has issued the USER 4 command at the CCP level,
the PIP statement

PIP X.Y = X.Y[G2]

reads file X.Y from user number 2 into user area number 4, The
command

PIP A:=A:* *[G2]

conies all of the files from the A drive directory for user number 2
into the A drive directory of the currently logged user number. Note
that to ensure file security, one cannot copy files into a different
area than the one which is currently addressed by the USER command.

Note also that the PIP program itself is initially covied to a
user area (so that subsequent files can be copied) using the SAVE
command. The sequence of operations shown below effectively moves PIP
from one user area to the next.

USER 9 login user o

DDT PIP.COM load PIP to memory
(note PIP size s)

Go return to CCP
USER 3 login user 3

SAVE s PIP,.COM

where s is the integral number of memory "pages" (256 byte segments)
occupied by PIP. The number s can be determined when PIP.COM is
loaded under DDT, by referring to the value under the "NEXT" display.
If for example, the next available address is 1D#d@, then PIP.COM
requires 1C hexadecimal pages (or 1 times 16 + 12 = 28 pages), and
thus the value of s is 28 in the subsequent save. Once PIP is copied
in this manner, it can then be copied to another disk belonging to the
same user number through normal pip transfers.

Under normal operation, PIP will not overwrite a file which 1is
set to a permanent R/0 status. If attempt is made to overwrite a R/O
file, the prompt

(All Information Contained Herein is Proprietary to Digital Research.)

8

NPRSTINATION FILE IS R/O, DELETE (Y/N)?

is issued. If the operator responds with the character "y" then the
file is overwritten. Otherwise, the response

** NOT DELETED *¥*

is issued, the file transfer is skippped, and PIP continues with the
next operation in sequence. In order to avoid the prompt and response
in the case of R/O file overwrite, the command line can include the W
parameter, as shown below

PIP A:=B:* COM[W]

which copies all non-system files to.the A drive from the B drive, and
overwrites any R/O files in the process. If the operation involves
several concatenated files, the W parameter need only be included with
the last file in the list, as shown in the following example

PIP A.DAT = B.DAT,F:NEW.DAT,G:0OLD.DAT[W]

files with the system attribute can be included in PIP transfers
if the R parameter 1is included, otherwise system files are not
recognized, The command line

pIP ED,COM = B:ED,COM[R]

for example, reads the ED,COM file from the B drive, even if it has
been marked as a R/0 ana system file., The system file attributes are
copied, if present.

It should be noted that downward compatibility with previous
versions of CP/M 1is only maintained if the file does not exceed one
megabyte, no file attributes are set, and the file is created by user
0. If compatibility 1is required with non-standard (e.g., "double
density") versions of 1.4, it may be necessary to select 1.4
compatibility mode when constructing the internal disk parameter block
(see the "“CP/M 2.0 Alteration Guide," and refer to Section 10 which
describes BIOS differences).

(All Information Contained Herein is Proprietary to Digital Research.)

9

6. ED ENHANCEMENTS.

The CP/M standard orogram editor provides several new facilities
in the 2.0 release. Experience has shown that most operators use the
relative line numbering feature of ED, and thus the editor has the “v"
(Verify Line) option set as an initial value. The operator can, of
course, disable line numbering by typing the "-v" command. If you are
not familiar with the ED line number mode, you may wish to refer to
the Appendix in the ED wuser's guide, where the "v" command is
described.

ED also takes file attributes into account,. If the operator
attempts to edit a read/only file, the message

** FILE IS READ/ONLY *¥*

appears at the console, The file can bpe loaded and examined, but
cannot be altered in any way. Normally, the operator simply ends the
edit session, and uses STAT to change the file attribute to R/W. If
the edited file has the "system" attribute set, the message

"SYSTEM" FILE NOT ACCESSIBLE
is displayed at the console, and the edit session is aborted. Again,
the STAT program can be used to change the system attribute, if
desired.

Finally, the insert mode ("i") command allows CRT 1line editing
functions, as described in Section 2, above.

(All Information Contained Herein is Proprietary to Digital Research.)

19

7. THE XSUB FUNCTION,

An additional utility program is supplied with version 2.0 of
CP/M, called XSUB, which extends the power of the SUBMIT facility to
include line input to programs as well as the console command
processor, The XSUB command is included as the first line of your
submit file and, when executed, self-relocates directly below the CCP,
All subsequent submit command 1lines are processed by XSUB, so that
programs which read buffered console input (BDOS function 10) receive
their input directly from the submit file, For example, the file
SAVER.SUB could contain the submit lines:

XSUB

DDT

I$1.HEX

R

GO

SAVE 1 $2.COM

with a subsequent SUBMIT command:
SUBMIT SAVER X Y
which substitutes X for $1 and Y for $2 in the command stream, The
XSUB program loads, followed by DDT which is sent the command lines
“IX.HEX" "R" and "“G@#" thus returning to the CCP. The final command
“SAVE 1 Y.COM" is processed by the CCP,
The XSUB program remains in memory, and prints the message
(xsub active)

on each warm start operation to indicate 1its presence, Subsequent
submit command streams do not require the XSUB, unless an intervening

cold start has occurred. Note that XSUB must be loaded after DESPOOL,
if both are to run simultaneously.

(All Information Contained Herein is Proprietary to Digital Research.)

11

8. BDOS INTERFACE CONVENTIONS.

CP/M 2.0 system calls take place in exactly the same manner as
earlier versions, with a call to location G005H, function number in
register C, and information address in register pair DE. Single byte
values are returned in register A, with double byte values returned in
HL (for reasons of compatibility, register A = L and register B = H
upon return in all cases). A list of CP/M 2.8 calls is given below,
with an asterisk following functions which are either new or revised
from version 1.4 to 2.0. Note that a =zero value 1is returned for
out-of range function numbers,

¥ System Reset 19* Delete File

1 Console Input 20 Read Seguential

2 Console Output 21 Write Seguential

3 Reader Input 22* Make File

4 Punch Output 23* Rename File

5 List Outout 24* Return Login Vector

6* Direct Console I/0 25 Return Current Disk

7 Get I/0 Byte 26 Set DMA Address

8 Set I/0O Byte 27 Get Addr(Alloc)

9 Print String 28* Write Protect Disk
10* Read Console Buffer 29* Get Addr (R/O Vector)
11 Get Console Status 30* Set File Attributes
12* Return Version Number 31* Get Addr(Disk Parms)
13 Reset Disk System 32* Set/Get User Code
14 Select Disk 33* Read Random
15* Open File 34* Write Random
16 Close File 35* Comoute File Size
17* Search for First 36* Set Random Record

18* Search for Next

(Functions 28, 29, and 32 should be avoided in application programs to
maintain upward compatibility with MP/M.) The new or revised functions
are described below.

Function 6: Direct Console I/O.

Direct Console I/0 1is supported under CP/M 2.8 for those
applications where it 1is necessary to avoid the BDOS console I/O
operations., Programs which currently perform direct I/O through the
BIOS should be changed to use direct I/0 under BDOS so that they can
be fully supported under future releases of MP/M and CP/M.

Upon entry to function 6, register E eitner contains hexadecimal
FF, denoting a console input reguest, or register E contains an ASCII
character. If the input value is FF, then function 6 returns A = §0
if no character is ready, otherwise A contains the next console input
character.

If the inoput value in E is not FF, then function 6 assumes that
E contains a valid ASCII character which is sent to the console.

(A1l Information Contained Herein is Proprietary to Digital Research.)

12

Function 10: Read Console Buffer.

The console buffer read operation remains unchanged except that
console 1line editing is supported, as described in Section 2. Note
also that certain functions which return the carriage to the leftmost
position (e.g., ctl-X) do so only to the column position where the
prompt ended (previously, the carriage returned to the extreme left
margin). This new convention makes operator data input and line
correction more legible,

Function 12: Return Version Number,

Function 12 has been redefined to orovide information which
allows version-independent orogramming (this was previously the "1lift
head" function whicn returned HL=000Y¥ in version 1.4, but performed no
operation). The value returned by function 12 is a two-byte value,
with H = 00 for the CP/M release (H = 01 for MpP/M), and L = 69 for all
releases previous to 2.0. CP/M 2.0 returns a hexadecimal 20 in
register L, with subseguent version 2 releases 1in the hexadecimal
range 21, 22, through 2F. Using function 12, for examole, you can
write application programs which provide both sequential and random
access functions, with random access disabled when operating under
early releases of CP/M.

In the file overations described below, DE addresses a file
control bplock (FCB). Further, all directory operations take place in
a reserved area which does not affect write buffers as was the case in
version 1.4, with the exception of Searcn First and Search Next, where
compatibility is required.

The File Control Block (FCB) data area consists of a sequence of 33
bytes for sequential access, and a series of 36 bytes in the case that
the file 1is accessed randomly. The default file control block
normally located at ¥45CH can be used for random access files, since
bytes @07DH, WO7EH, and @07FH are available for this purpose. For
notational purposes, the FCB format is shown with the following
fields:

(All Information Contained Herein is Proprietary to Digital Research.)

13

b 01 62 ... U8 69 16 11 12 13 14 15 16 ... 31 32 33 34 35

where

dr drive code (U - 16)
B => use default drive for file
1 => auto disk select drive A,
2 => auto disk select drive B,

16=> auto disk select drive P.

£ls. <8 contain the file name in ASCII
uoper case, with high bit = 6

tl,t2,t3 contain the file type in ASCII
upper case, with high bit = @
tl', t2', and t3' denote the
bit of these positions,

tl' = 1 => Read/Only file,
t2' = 1 => SYS file, no DIR list
ex contains the current extent number,

normally set to 90 by the user, but
in range ¥ - 31 during file I/0

sl reserved for internal system use

s2 reserved .for internal system use, set
to zero on call to OPEN, MAKE, SEARCH

rc record count for extent "ex,"
takes on values from @ - 128

dd...dn filled-in by CP/M, reserved for
system use

(o} 2 current record to read or write in
a sequential file operation, normally
set to zero by user

rd,rl,r2 optional random record number in the
range #¥#-65535, with overflow to r2,
rd,rl constitute a 16-bit value with
low byte rf, and high byte rl

Function 15: Open File,

Tne Open File operation is identical to previous definitions,
with the exception that byte s2 is automatically zeroed. Note that
previous versions of CP/M defined this byte as =zero, but made no

(All Information Contained Herein is Proprietary to Digital Research.)

14

cnecks to assure compliance, Thus, the byte is cleared to ensure
upward compatibility with the latest version, where it is required.

Function 17: Search for First.

Search First scans the directory for a match with the file given
by the FCB addressed by DE. The value 255 (hexadecimal FF) 1is
returned if the file is not found, otherwise a value of A equal to ¢,
l, 2, or 3 is returned indicating the file is present. In the case
that the file 1is found, the current DMA address is filled with the
record containing the directory entry, and the relative starting
position is A * 32 (i.e., rotate the A register left 5 bits, or ADD A
five times). Although not normally required for application programs,
the directory information can be extracted from the buffer at this
position.

An ASCII gquestion mark (63 decimal, 3F hexadecimal) in any
position from f1 through ex matches the corresponding field of any
directory entry on the default or auto-selected disk drive. If the dr
field contains an ASCII question mark, then the auto disk select
function is disabled, the default disk is searched, with the search
function returning any matched entry, allocated or free, belonging to
any user number, This latter function 1is not normally used by
application programs, out does allow complete flexibility to scan all
current directory values. If the dr field is not a guestion mark, the
s2 byte is automatically zeroed.

Function 18: Search for Next.

The Search Next function 1is similar to the Search First
function, except that the directory scan continues from the last
matched entry. Similar to function 17, function 18 returns the
decimal value 255 in A when no more directory items match,

Function 19: Delete File.

The Delete File function removes files which match the FCB
addressed by DE. The filename and type may contain ambiguous
references (i.e., guestion marks in various positions), but the drive
select code cannot be ambiguous, as in the Search and Search Next
functions,

Function 19 returns a decimal 255 if the reference file or files
could not be found, otherwise a value in the range @ to 3 is returned.

(All Information Contained Herein is Proprietary to Digital Research.)

13

Function 22: Make File,

The Make File operation is identical to previous versions of
CpP/M, except that byte s2 is zeroed upon entry to the BDOS.

Function 23: Rename File.

The Actions of the file rename functions are the same as
previous releases except that the value 255 is returned if the rename
function is unsuccessful (the file to rename <could not be found),
otherwise a value in the range ¥ to 3 is returned.

Function 24: Return Login Vector,

The login vector value returned by CP/M 2.0 is a 16-bit value in
HL, where the least significant bit of L <corresponds to the first
drive A, and the high order bit of H corresponds to the sixteenth
drive, labelled P. Note that compatibility is maintained with earlier
releases, since registers A and L contain the same values upon return.

Function 28: Write Protect Current Disk.

The disk write protect function provides temoorary write
protection for the currently selected disk. Any attemot to write to
the disk, before the next cold or warm start operation produces the
message

Bdos Err on d: R/O

Function 29: Get R/O Vector,

Function 29 returns a bit vector in register pair HL which
indicates drives which have the temporary read/only bit set. Similar
to function 24, the least significant bit corresponds to drive A,
while the most significant bit corresponds to drive P. The R/O bit is
set either by an explicit call to function 28, or by the automatic
software mechanisms within CP/M which detect changed disks.

Function 380: Set File Attributes.

The Set File Attributes function allows programmatic
manipulation of permanent indicators attached to files, In
particular, the R/O0 and System attributes (tl' and t2' above) can be
set or reset. The DE pair addresses an unambiguous file name with the
appropriate attributes set or reset,. Function 30 searches for a

(All Information Contained Herein is Proprietary to Digital Research,)

16

match, and changes the matched directory entry to contain the selected
inaicators., Indicators f1' through f4' are not wpresently used, but
may be wuseful for applications programs, since they are not involved
in the matching orocess during file open and close operations.
Indicators £5' tnrough f£f8' and t3' are reserved for future system
exoansion,

Function 31: Get Disk Parameter Block Address,

The address of the BIOS resident disk parameter block is
returned in HL as a result of this function call. This address can be
used for either of two purposes., First, the disk parameter values can
be extracted for display and space .computation purposes, or transient
programs can dynamically change the values of current disk parameters
when the disk environment changes, if required. Normally, apvolication
programs will not require this facility.

Function 32: Set or Get User Code,.

An application program can change or interrogate the currently
active wuser number by calling function 32, If register E = FF
nexadecimal, then the value of the current user number is returned in
register A, where the value is in the range 4 to 31, If register E is
not FF, then the current user number is changed to the value of E
(modulo 32).

Function 33: Read Random.

The Read Random function is similar to the sequential file read
operation of ©previous releases, except that the read overation takes
olace at a particular record number, selected by the 24-bit wvalue
constructed from the three byte field following the FCB (byte
positions r® at 33, rl at 34, and r2 at 35). Note that the seguence
of 24 bpits 1is stored with least significant pyte first (rv¥), middle
byte next (rl), and high byte last (r2). CP/M release 2.8 does not
reference byte r2, except in computing the size of a file (function
35). Byte r2 must be zero, however, since a non-zero value indicates
overflow past the end of file,

Thus, in version 2.0, the r#,rl byte pair 1is treated as a
double-byte, or “word" value, which contains the record to read. This
value ranges from ¥ to 65535, providing access to any particular
record of the 8 megabyte file. In order to ovrocess a file wusing
random access, the base extent (extent 0) must first be opened.
Although the pase extent may or may not contain any allocated data,
this ensures that the file is properly recorded in the directory, and
is visible in DIR requests. The selected record number is then stored
into the random record field (rd,rl), and the BDOS is called to read
the record. Upon return from the call, register A either contains an

(All Information Contained Herein is Proprietary to vigital Research.)

17

error code, as listed below, or the value 90 indicating the overation
was successful. In the latter case, the current DMA address contains
the randomly accessed record, Note that contrary to the sequential
read operation, the record number is not advanced. Thus, subsequent
random read operations continue to read the same record,

Upon each random read operation, the logical extent and current
record values are automatically set, Thus, the file can be
sequentially read or written, starting from the current randomly
accessed position, Note, however, that in this case, the last
randomly read record will be re-read as you switch from random mode to
sequential read, and the last record will be re-written as you switch
to a sequential write operation, You can, of course, simply advance
the random record wvosition following each random read or write to
obtain the effect of a sequential I/0 operation,

Error codes returned in register A following a random read are
listed below.

1 reading unwritten data

82 (not returned in random mode)
@3 cannot close current extent

¥4 seek to unwritten extent

¥5 (not returned in read mode)

D6 seek past physical end of disk

Error code ¢l and ¥4 occur when a random read operation accesses a
data block which has not been previously written, or an extent which
has not been created, which are equivalent conditions, Error 3 does
not normally occur under proper system operation, but can be cleared
by simply re-reading, or re-opening extent zero as long as the disk is
not physically write protected. Error code 06 occurs whenever byte r2
is non-zero under the current 2.0 release, Normally, non-zero return
codes can be treated as missing data, with 2zero return codes
indicating overation complete,

Function 34: Write Random.,

The Write Random overation is initiated similar to the Read
Random call, except that data is written to the disk from the current
DMA address. Further, if the disk extent or data block which 1is the
target of the write has not yet been allocated, the allocation is
performed before the write operation continues. As in the Read Random
operation, the random record number is not changed as a result of the
write. The logical extent number and current record positions of the
file control block are set to corresvond to the random record which is
being written. Again, sequential read or write operations can
commence following a random write, with the notation that the
currently addressed record is either read or rewritten again as the
sequential operation begins. You can also simply advance the random
record position following each write to get the effect of a sequential
write operation, Note that in particular, reading or writing the last
record of an extent in random mode does not cause an automatic extent

(A1l Information Contained Herein is Proprietary to Digital Research.)

18

switch as it does 1in sequential mode under either CP/M 1.4 or CP/M
2.9,

The error codes returned by a random write are identical to the
random read operation with the addition of error code 45, which
indicates that a new extent cannot be created due to directory
overflow.

Function 35: Compute File Size.

when computing the size of a file, the DE register pair
addresses an FCB in random mode format (bytes r6, rl, and r2 are
present)., The FCB contains an unambiguous file name which is used in
the directory scan. Upon return, the random record bytes contain the
"virtual" file size which is, in effect, the record address of the
record following the end of the file, if, following a call to
function 35, the high record byte r2 is 91, then the file contains the
maximum record count 65536 in version 2.8. Otherwise, bytes rd and rl
constitute a 16-bit value (r@ is the 1least significant byte, as
before) which is the file size,

Data can be appended to the end of an existing file by simply
calling function 35 to set the random record position to the end of
file, then performing a seguence of random writes starting at the
preset record address.

The virtual size of a file corresponds to the physical size when
the file is written sequentially. If, instead, the file was created
in random mode and "holes" exist in the allocation, then the file may
in fact contain fewer records than the size indicates. 1f, for
example, only the last record of an eight megabyte file is written in
random mode (i.e., record number 65535), then the virtual size 1is
65536 records, although only one block of data is actually allocated.

Function 36: Set Random Record.

The Set Random Record function causes the BDOS to automatically
produce the random record position from a file which has been read or
written sequentially to a particular point, The function can be
useful in two ways.

First, it is often necessary to initially read and scan a
sequential file to extract the positions of various "key" fields. As
each key is encountered, function 36 is called to compute the random
record position for the data corresponding to this key. If the data
unit size is 128 bytes, the resulting record vosition is placed into a
table with the key for later retrieval. After scanning the entire
file and tabularizing the keys and their record numbers, you can move
instantly to a particular keyed record by performing a random read
using the corresponding random record number which was saved earlier.
The scheme is easily generalized when variable record 1lengths are

(All Information Contained Herein is Proprietary to Digital Research.)

19

involved since the program need only store the buffer-relative byte
position along with the key and record number in order to £f£ind the
exact starting position of the keyed data at a later time.

A second use of function 36 occurs when switching from a
sequential read or write over to random read or write, A file is
sequentially accessed to a particular point in the file, function 36
is called which sets the record number, and subsequent random read and
write operations continue from the selectea point in the file.

This section is concluded with a rather extensive, but complete
example of random access operation, The program listed below performs
the simple function of reading or writing random records upon command
from the terminal. Given that the program has been created,
assembled, and placed into a file labelled RANDOM,COM, the CCp level
command:

RANDOM X.DAT

starts the test program. The program looks for a file by the name
X.DAT (in this particular case) and, if found, proceeds to prompt the
console for input., If not found, the file 1is <created before the
orompt is given. Each prompt takes the form

next command?

and is followed by operator input, terminated by a carriage return.
The input commands take the form

nw nR Q

where n is an integer value in the range 4 to 65535, and W, R, and Q
are simple command characters corresponding to random write, random
read, and quit processing, resvectively. If the W command is 1issued,
the RANDOM program issues the prompt

type data:

The operator then responds by typing up to 127 characters, followed by
a carriage return, RANDOM then writes the character string into the
X.DAT file at record n. If the R command is issued, RANDOM reads
record number n and displays the string value at the console., If the
Q command is issued, the X.DAT file is closed, and the program returns
to the console command processor. In the interest of brevity (ok, so
the program's not so brief), the only error message is

error, try again
The program begins with an initialization section where the
input file is opened or created, followed by a continuous loop at the
label "ready" where the individual commands are interpreted. The

default file control block at 985CH and the default buffer at 9080H
are used in all disk operations. The utility subroutines then follow,

(All Information Contained Herein is Proprietary to Digital Research,)

29

which contain the principal input 1line processor, called *"readc."

This wparticular program shows the elements of random access

processing, and can be wused as the basis for further program
‘ development.

;***

%k *
;* sample random access program for co/m 2.0 x
o % *
;***

b100 org 18dh ;base of tva

2000 = reboot eau 0o00h ;system reboot

2095 = bdos equ d0d5h ;bdos entry point

Vool = coninp equ 1 ;console input function

goe2 = conout equ 2 ;console output function

Qovy = pstring equ 9 ;print string until '$°

ddda = rstring equ 19 ;read console buffer

Pdbc = version egqu 12 ;return version number

200f = openf equ 15 ;file open function

09180 = closef equ 16 ;close function

gRle = makef eqgu 22 ;make file function

Jul = readr eqgu 33 ;read random

9022 = writer eagu 34 ;write random

d@5¢c = %cb equ ¥d5ch ;default file control block

. o774 = ranrec egu fcb+33 ;random record vposition

a7t = ranovf equ fco+35 ;high order (overflow) byte

2080 = buff egqu 2d80h sbuffer address

ppod = (o] = equ @dh ;carriage return

0bda = 1f equ Wah ;line feed
;***
o % *
;* load sP, set-up file for random access "
o % *
;***

3100 31bcd Ixi so,stack
; version 2.0?

0103 Qebc mvi c,version

2185 cdps5e call bdos

2108 fe20 cpi 20h ;version 2.0 or better?

Ulda d21606 jnc versok
: bad version, message and go back

104 111bd 1xi d,badver

9119 cddad call print

2113 c3000 jmo reboot
versok:

' : correct version for random access

(A1l Information Contained Herein is Provorietary to Digital Research,)

21

9116 debf mvi c,openf ;open default fcb

8118 115cH 1xi d,fch

@11b cdgs5e6 call bdos

glle 3c inr a ;err 255 becomes zero

V11f c237d jnz ready
5 cannot open file, so create it

$122 delb mvi c,makef

9124 115c@ 1xi d,fcb

9127 cdi5e call bdos

bpl2a 3c inr a serr 255 becomes zero

912b c2370 jnz ready
3 cannot create file, directory full

¥1l2e 113ad 1xi d,nospace

8131 cddad call print

0134 c3930 jmp reboot ;back to ccp
;***
o % *
’
;* loop back to “ready" after each command L
.* *
;*******w***
;
ready:
: file is ready for processing
;

9137 cdeb5y call readcom ;read next command

@13a 22749 shld ranrec ;store input record#

v13d 217f£0 lxi h,ranovf

0140 3600 mvi m,o ;clear high byte if set

9142 fe51 cpi '‘Q" ;quit?

0144 c2569 jnz notg
: guit processing, close file

9147 Geld mvi c,closef

8149 115cw 1xi d,fcb

B1l4c cdise call bdos

014f 3c inr a ;err 255 becomes 0

2150 cabdyd jz error ;error message, retry

2153 c3d00 jmp reboot ;back to ccp
;***
. *
;* end of gquit command, process write %
o K *
;***
notqg:
: not the quit command, random write?

2156 fe57 cpi W’

$158 c2896 jnz notw
H
: this is a random write, fill buffer until cr

¥15b 11440 Ixi d,datmsg

d15e cddad call print ;data prompt

(A1l Information Contained Herein is Proprietary to Digital Research,)

22

2161 de7f mvi Cyd2T ;up to 127 characters

H163 21800 1xi h,puff ;destination
rloop: ;read next character to buff
4166 c5 push b ; save counter
‘ d167 e5 push h ;next destination
¥168 cdc2d call getchr j;character to a
Jd16p el pop h ;restore counter
glé6c cl pOD b ;restore next to fill
@led fedd cpi cr ;end of line?
d16f ca78d % erloop
H not end, store character
9172 717 mov m,a
g173 28 inx h ;next to fill
¥4174 04 dcr (o ;counter goes down
9175 c2660 jnz rloop ;end of puffer?
erloop:
: end of read loop, store 90
178 3699 mvi m,d
’
s write the record to selected record number
d17a Ve22 mvi c,writer
d17c 115cd Ixi d,fcb
D17f cdp5d call bdos
4182 b7 ora a ;error code zero?
0183 c2b%wv jnz error ;message if not
9186 c3379 jmp ready ; for another record
;***
o % *
‘ ;* end of write command, nrocess read "
% *
;***********x***************************************
notw:
; not a write command, read record?
9189 fes52 cpi 'R'
d18b c2b90d jnz error ;skip if not
: read random record
d18e de2l mvi c,readr
2190 115cd 1xi d,fcb
9193 cdd56 call bdos
196 b7 ora a ;return code 967?
0197 c2b9v jnz error
. read was successful, write to console
#19a cdcfo call crlf ;new line
019d Je8W mvi c;128 ;max 1238 characters
¥W19f 21809 1xi h,buff ;next to get
wloop:
bla2 7e mov a,m :next character
@la3 23 inx h ;next to get
Plad e67f ani 7fh ;mask parity
#1la6 ca370 12 ready ;for another command if 00
@lad9 c5 push b ;save counter
' Blaa e5 push h ;save next to get

(All Information Contained Herein is Proprietary to Digital Research,)

23

¥lab
dlad
1by
d1bl
91b2
Y1b3
¥1b6

31b9
Blbc
31bf

@1lc2
d1cd
F1lc?

W1lc8
@lca
@1cb
Dlce

Jlcft
g1dl
¥1d4
g1de
9149

¥1lda
?1db
J1lde
d1ldaf
dlel
dled

(All Information Contained

fe2d
d4c8d
el

cl

@ad
c2a2f
c3379

11590
cddag
c33780

Bedl
cdd50
c9

bel2
5f
cdds5d
c9

3efd
cdc8d
3eda
cdc8i
c9

das
cdcfd
dl
0eb9
cd@gs5e
c9

* ¥ ¥ * X

(D ~e ~eo weo we wo ~eo ~e

(2]
~
o
~

.

e we we we weo
* % * X

cpi
cnc
POp
pop
dcr
jnz
jmp

1x1
call
jmp

;graphic?
putchr ;skip output if not .
h
b
¢ ;count=count-1
wloop
ready

IR EE R R R E RS SEEE SRR R R RS R R R R R R R R R R R R R R R E R R RN R R EESE R

*

end of read command, all errors end-up here *

*

LRSS R RS EEERERE SRR R R RS R R RS R R R R R R R R R R R R R EEERESE

d,errmsg
print
ready

IR R RS R RS SEE RS RS R R RS R R R RS R R R R R R R R R RS R R R EREEEEE S

*

utility subroutines for console i/o *

*

;***

getchr:

putchr:

crlf:

print:

’
readcom:

sread next console character to a

mvi
call
ret

c,coninp
bdos

;write character from a to console

mvi
mov
call
ret

¢ ,conout
e,a ;character to send
bdos :send character

;send carriage return line feed

mvi
call
mvi
call
ret

a,cr ;carriage return
putchr

a,lf :line feed
putchr

;print the buffer addressed by de until §

push
call
Pop
mvi
call
ret

d

crlf

d ;new line
c,pstring

bdos ;print the string

Herein is Proprietary to Digital Research.)

24

;jread the next command line to the conbuf

dle5 116bd 1xi d,prompt

Ple8 cddad call print ;command?

Bleb deda mvi c,rstring

. Bled 117a0 1xd d,conbuf

B1fd cd@s56 call bdos ;read command line
; command line is present, scan it

B1£3 21000 ixi h,? ;start with 0000

B1f6 117co 1xi d,conlin;command line

91f9 la readc: ldax d ;next command character

d1fa 13 inx d ;:to next command position

B1lfb b7 ora a ;cannot be end of command

J1lfc c8 rz
: not zero, numeric?

P1fd de3d sui ‘g

91ff feba cpi 19 ;carry if numeric

¥201 42139 jnc endrd
: add-in next digit

0204 29 dad h §%*2

V205 4d mov C,l

B206 44 mov b,h sbc = value * 2

4207 29 dad h ;%4

D208 29 dad h ;%8

2209 09 dad b ;%2 + *8 = *19

P2da 85 add | ;+digit

d290 6T mov 1l,a

d206c a2t9d jnc readc ;for another char

J29f 24 inr h ;overflow

0219 c3£99 jmp readc ; for another char

‘ endrd:

: end of read, restore value in a

8213 c639¥ adi ‘G ; command

9215 febl coi 'a' ;translate case?

d217 a8 rc
: lower case, mask lower case bits

0218 eb5f ani 101$1111b

92la c9 ret
;***
° % *
;* string data area for console messages *
%k *
;***
badver:

d21b 536£79 db 'sorry, you need cp/m version 2§'
nospace:

d23a 4e6£29 db 'no directory space$’
datmsg:

6244 547970 db ‘type data: $°'
errmsg:

2259 457272 db 'error, try again.$'
prompt:

B26b 4e6570 db 'next command? $°'

]
14

(All Information Contained Herein is Proprietary to Digital Research.)

25

;***

.* *
;* fixed and variable data area *
. *
;***
g27a 21 conbuf: db conlen ;length of console buffer
927b consiz: ds 1 sresulting size after read
@27c conlin: ds 32 :length 32 buffer
d821 = conlen equ $—-consiz
H
229c ds 32 ;116 level stack
stack:
d2bc end

(All Information Contained Herein is Proprietary to Digital Research.)

26

9. Cp/M 2.0 MEMORY ORGANIZATION.

Similar to earlier versions, CP/M 2.0 is field-altered to fit
various memory sizes, depending upon the host computer memory
configuration, Typical base addresses for popular memory sizes are
shown in the table below.

Module 20k 24k 32k 48k 64k
cCP 3400H 4400H 640041 A400H E400H
BDOS 3COVH 4C092H 6C0O0H ACO9H ECO0H
BIOS 4A00H 5A00H 7A00H BAQOH FAQ3H

Top of Ram 4FFFH S5FFFH 1FFFH BFFFH FFFFH

The distribution disk contains a CP/M 2.0 system configured for a 20k
Intel MDS-808 with standard 1I8M 8" floppy disk drives. The disk
layout is shown below:

Sector Track @0 Module Track ¢1 Module
1 (Bootstrap Loader) 4089H BDOS + 480H
2 3400H CCP + 009H 4190H BDOS + 500H
3 34306H CCP + @8dH 418@H BDOS + 580dH
4 35304 CCP + 100H 4200H BDOS + 6Q0H
5 3580H CCP + 18dH 423YH BDOS + 680d
6 3600H CCP + 200H 4306H BDOS + 700H
7 363804 CCp + 280H 438¢UH BDOS + 780H
8 37004 CCP + 300H 44p0v¥H BDOS + 800H
9 3780d CCP + 380@H 44800 BDOS + 88VH

19 38vod CCP + 4906H 4590H BDOS + 900H
11 3886H CCP + 4380H 45380H BDOS + 989H
12 39008 CCP + 500H 46d¥H BDOS + A@@H
13 3980H CCP + 580H 4680H BDOS + A80H
14 3A00H CCP + 600H 4709H BDOS + BOOH
15 3A80H CCP + 680H 4780H BDOS + B3@H
16 3BUOH CCP + 7904 4300H BDOS + C@0@H
17 3B30@H CCP + 780H 4880d BDOS + C80@H
18 3C00H BDOS + 000H 49903 BDOS + D@APH
19 3C80H BDOS + 080H 4980H BDOS + D8@H
20 3D@PH BDOS + 100H 4AGPH BIOS + POPH
21 3D8PH BDOS + 180H 4A80H BIOS + 980H
22 3EQOH BDOS + 206H 4B300H BIOS + 100H
23 3E80H BDOS + 280H 4B80H BIOS + 180H
24 3F0PH BDOS + 300H 4CO0H BIOS + 200H
25 3F8AH BDOS + 380H 4C8PH BIOS + 280H
26 4000H BDOS + 400H 4D3OPH BIOS + 300H

In particular, note that the CCP is at the same position on the disk,
and occupies the same space as version 1.4, The BDOS portion,
however, occupies one more 256-byte page and the BIOS portion extends
through the remainder of track 01. Thus, the CCP is 800H (2048
decimal) bytes in length, the BDOS is E@@H (3584 decimal) bytes in
length, and the BIOS is up to 380H (898 decimal) bytes in length. 1In
version 2.8, the BIOS portion contains the standard subroutines of
1.4, along with some 1initialized table space, as described in the
following section,

(All Information Contained Herein is Proprietary to Digital Research.)

27

19, BIOS DIFFERENCES.

The CP/M 2.0 Basic I/0 System differs only slightly in concept
from its predecesssors., Two new jump vector entry points are defined,
a new sector translation subroutine 1is included, and a disk
characteristics table must be defined. The skeletal form of these
changes are found in the program shown below.

- org 4000h

2:3 maclip diskdef

Y jmp boot

4: ; .y

5: jmp listst ;list status

6 jmp sectran ;sector translate

1% disks 4

8: ;3 large capacity drive

9: bpb equ 16*1324 ;bytes per block

10: rpb equ bpb/128 ;records per block

11: maxb equ 65535/rpb ;max block number
12: diskdef ¢,1,58,3,bpb,maxb+1,128,0,2
13¢ diskdef 1,1,58, ,bpb,maxb+1,128,0,2

14: diskdef 2,0

153 diskdef 3,1

16: ;

17: boot: ret ;nop
18: ;

19: listst: xra a ; NOp

29 ret

21:

22: seldsk:

232 ;drive number in c

24 1xi h,d ;0000 in hl produces select error
25 mov a,c ;a is disk number 4 ... ndisks-1
26: cpi ndisks ;less than ndisks?

27 rnc ;return with HL = 0848 if not
28 proper disk number, return dpb element address
29: mov 1l,c

30: dad h :%2
31 dad h ;%4
32: daad h ;%8
33 dad h ;%16
34: 1xi d,dpbase
35: dad d ; HL=,dpb
363 ret
37: ;

38: selsec:

39: ;sector number in c

49 1xi h,sector

41: mov m; ¢

42: ret

43: ;

44: sectran:

45:; ;translate sector BC using table at DE
46: xchg ;HL = .tran

47: dad b ;single precision tran

(All Information Contained Herein is Proprietary to Digital Research.)

28

48:; dad b again if double precision tran

49: mov l,m ;only low byte necessary here
583 3 fill both H and L if double orecision tran
51 ret sHL = ?7?ss

52: 3

53: sector: ds 1

54: endef

553 end

Referring to the program shown above, lines 3-6 represent the
BIOS entry vector of 17 elements (version 1.4 defines only 15 jump
vector elements). The 1last two elements provide access to the
"LISTST" (List Status) entry point for DESPOOL. The use of this
particular entry point is defined in the DESPOOL documentation, and is
no different than the previous 1.4 release, It should be noted that
the 1,4 DESPOOL woprogram will not operate under version 2.0, but an
update version will be available from Digital Research in the near
future.

The “SECTRAN" (Sector Number Translate) entry shown in the jump
vector at line 6 provides access to a BIOS-resident sector translation
subroutine. This mechanism allows the user to specify the sector skew
factor and translation for a particular disk system, and is described
below.

A macro library is shown in the 1listing, called DISKDEF,
included on line 2, and referenced in 12-15, Although it is not
necessary to use the macro liprary, it greatly simplifies the disk
definition process. You must have access to the MAC macro assembler,
of course, to use the DISKDEF facility, while the macro library is
included with all CP/M 2.0 distribution disks. (See the CP/M 2.0
Alteration Guide for formulas which you can wuse to hand-code the
tables produced by the DISKDEF library).

A BIOS disk definition consists of the following sequence of
macro statements:

MACLIB DISKDEF
DISKS n
DISKDEF 4,...
DISKDEF 1

DISKDEF n-1

7 e o e

ENDEF

where the MACLIB statement loads the DISKDEF.LIB file (on the same
disk as vyour BIOS) into MAC's internal tables, The DISKS macro call
follows, which specifies the number of drives to be configured with
your system, where n is an integer in the range 1 to 16. A series of
DISKDEF macro calls then follow which define the characteristics of
each 1logical disk, @ through n-1 (corresponding to logical drives A
through P). Note that the DISKS and DISKDEF macros generate in-line

(All Information Contained Herein is Proprietary to Digital Research,)

29

fixed data tables, and thus must be placed in a non-executable portion
of your BIOS, typically directly following the BIOS jump vector.

The remaining portion of your BIOS is defined following the
DISKDEF macros, with the ENDEF macro call immediately preceding the .
END statement, The ENDEF (End of Diskdef) macro generates the
necessary uninitialized RAM areas which are located above your BIOS.

The form of the DISKDEF macro call is

DISKDEF dn,fsc,1lsc,[skf],bls,dks,dir,cks,ofs, [0]

where
dn is the logical disk number, ¥ to n-1
fsc is the first physical sector number (§ or 1)
1sc is the last sector number
skf is the optional sector skew factor
bls is the data allocation block size
dir is the number of directory entries
cks is the number of "checked" directory entries
ofs is the track offset to logical track 90
(0] is an optional 1.4 compatibility flag

The value "dn" is the drive number being defined with this DISKDEF
macro invocation, The "fsc" parameter accounts for differing sector
numbering systems, and is usually @ or 1. The "lsc" 1is the 1last
numbered sector on a track. When present, the "skf" parameter defines
the sector skew factor which is used to create a sector translation
table according to the skew. If the number of sectors 1is 1less than
256, a single-byte table is created, otherwise each translation table
element occupies two bytes. No translation table is created if the
skf parameter is omitted (or equal to 0). The "bls" parameter
specifies the number of bytes allocated to each data block, and takes
on the wvalues 1024, 2048, 4096, 8192, or 16334, Generally,
performance increases with larger data block sizes since there are
fewer directory references and logically connected data records are
physically close on the disk. Further, each directory entry addresses
more data and the BIOS-resident ram space is reduced. The "dks"
specifies the total disk size in "bls" units. That is, if the bls =
2048 and dks = 1008, then the total disk capacity is 2,048,000 bytes.
If dks is greater than 255, then the block size parameter bls must be
greater than 1024, The value of "dir" is the total number of
directory entries which may exceed 255, if desired. The ‘“cks"
parameter determines the number of directory items to check on each
directory scan, and is used internally to detect changed disks during
system operation, where an intervening cold or warm start has not
occurred (when this situation is detected, CP/M automatically marks
the disk read/only so that data is not subsequently destroyed).
Normally the value of cks = dir when the media is easily changed, as
is the case with a floppy disk subsystem. If the disk is permanently
mounted, then the value of cks is typically @, since the ©probability
of changing disks without a restart is guite low. The "ofs" value
determines the number of tracks to skip when this particular drive |is
addressed, which can be used to reserve additional operating system

(All Information Contained Herein is Proprietary to Digital Research.)

30

space or to simulate several logical drives on a single large capacity
physical drive. Finally, the [@#] parameter is included when file
compatibility is required with versions of 1.4 which have been
modified for higher density disks. This parameter ensures that only
16K is allocated for each directory record, as was the case for
previous versions, ©Normally, this parameter is not included.

For convenience and economy of table svace, the special form
DISKDEF i,

gives disk i the same characteristics as a previously defined drive j.
A standard four-drive single density system, which is compatible with
version 1.4, is defined using the following macro invocations:

DISKS 4
DISKDEF 9,1,26,6,1024,243,64,64,2
DISKDEF 1.9
DISKDEF 2,0

3,9

DISKDEF

ENDEF

with all disks having the same parameter values of 26 sectors per
track (numbered 1 through 26), with 6 sectors skipped between each
access, 1024 bytes per data block, 243 data blocks for a total of 243k
byte disk capacity, 64 checked directory entries, and two operating
system tracks.

The definitions given in the program shown above (lines 12
through 15) provide access to the largest disks addressable by CP/M
2.8, All disks have identical parameters, except that drives # and 2
skip three sectors on every data access, while disks 1 and 3 access
each sector in sequence as the disk revolves (there may, however, be a
transparent hardware skew factor on these drives).

The DISKS macro generates n "disk header blocks," starting at
address DPBASE which 1is a label generated by the macro. Each disk
header block contains sixteen bytes, and correspond, in sequence, to
each of the defined drives., 1In the four drive standard system, for
example, the DISKS macro generates a table of the form:

DPBASE EQU $

DPE#: DW XLTO ,0000H,0000H,0000d ,DIRBUF ,DPBJ,CSV@ ,ALVH
DPEl: DW XLTO ,0000H,0000H,0000H,DIRBUF ,DPBJ,CSV]1,ALV1
DPE2: DW XLT@ ,0000H,0000H,0000H,DIRBUF ,DPBJ,CSV2,ALV2
DPE3: DW XLTO ,0000H,0000H,0000H,DIRBUF ,DPBJ,CSV3,ALV3

where the DPE (disk parameter entry) labels are included for reference
purposes to show the beginning table addresses for each drive 0
through 3. The values contained within the disk parameter header are
described in detail in the CP/M 2.0 Alteration Guide, but basically
address the translation vector for the drive (all reference XLT#O,
which is the translation vector for drive @ in the above example),

(All Information Contained Herein is Proprietary to Digital Research.)

31

followed by three 16-bit *"scratch" addresses, followed by the
directory buffer address, disk parameter block address, check vector
address, and allocation vector address, The check and allocation
vector addresses are generated by the ENDEF macro in the ram area
following the BIOS code and tables.

The SELDSK function is extended somewhat in version 2.0. In
particular, the selected disk number is passed to the BIOS in register
C, as before, and the SELDSK subroutine performs the appropriate
software or hardware actions to select the disk. Version 2.0,
however, also requires the SELDSK subroutine to return the address of
the selected disk parameter header (DPE®, DPEl, DPE2, or DPE3, in the
above example) in register HL. If SELDSK returns the value HL =
d000PH, then the BDOS assumes the disk does not exist, and prints a
select error mesage at the terminal. Program lines 22 through 36 give
a sample CP/M 2.0 SELDSK subroutine, showing only the disk parameter
header address calculation,

The subroutine SECTRAN is also included in version 2.0 which
performs the actual 1logical to physical sector translation. 1In
earlier versions of CP/M, the sector translation process was a part of
the BDOS, and set to skip six sectors between each read. Due
differing rotational speeds of various disks, the translation function
has become a part of the BIOS in version 2.6. Thus, the BDOS sends
sequential sector numbers to SECTRAN, starting at sector number @,
The SECTRAN subroutine uses the sequential sector number to produce a
translated sector number which is returned to the B8DOS. The BDOS
subsequently sends the translated sector number to SELSEC before the
actual read or write is verformed. Note that many controllers have
the capability to record the sector skew on the disk itself, and thus
there is no translation necessary. 1In this case, the "skf" parameter
is omitted in the macro call, and SECTRAN simply returns the same
value which it receives, The table shown below, for example, 1is
constructed when the standard skew factor skf = 6 is specified in the
DISKDEF macro call:

XLTO0: DB 1,7:13,19,25,5,11,17,23,3,9,15,21
DB 2,8,14,20,26,6,12,18,24,4,10,16,22

If SECTRAN is required to translate a sector, then the following
process takes place. The sector to translate is received in register
pair BC. Only the C register is significant if the sector value does
not exceed 255 (B = @@ in this case). Register pair DE addresses the
sector translate table for this drive, determined by a previous call
on SELDSK, corresponding to the first element of a disk parameter
header (XLT@ in the case shown above). The SECTRAN subroutine then
fetches the translated sector number by adding the input sector number
to the base of the translate tapble, to get the indexed translate table
address (see lines 46, 47, and 48 in the above program). The value at
this location is then returned in register L, Note that if the number
of sectors exceeds 255, the translate table contains 1l6-bit elements
whose value must be returned in HL.

Following the ENDEF macro call, a number of wuninitialized data
areas are defined. These data areas need not be a part of the BIOS
(A1l Information Contained Herein is Proprietary to Digital Research.)

32

which is loaded upon cold start, but must be available between the
BIOS and the end of memory. The size of the uninitialized RAM area is
determined by EQU statements generated by the ENDEF macro. For a
standard four-drive system, the ENDEF macro might oroduce

4C72 = BEGDAT EQU 3
(data areas)
4DBY = ENDDAT EQU $
¥g13C = DATSIZ EQU $-BEGDAT

which indicates that uninitialized RAM begins at location 4C72H, ends
at 4DBYH-1, and occupies ¥13CH bytes. You must ensure that these
addresses are free for use after the system is loaded.

CP/M 2.0 is also easily adapated to disk subsystems whose sector
size is a multiple of 128 bytes. Information is orovided by the BDOS
on sector write operations which eliminates the need for pre-read
operations, thus allowing plocking and deblocking to take place at the
BIOS level.

See the “"CP/M 2.d4 Alteration Guide" for additional details
concerning tailoring your CP/M system to your particular hardware.

(All Information Contained Herein is Proprietary to Digital Research.)

33

C

I DIGITAL RESEARCH

. Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

ED: A CONTEXT EDITOR FOR THE CP/M DISK SYSTEM
USER'S MANUAL

COPYRIGHT (c) 1976, 1978

DIGITAL RESEARCH

Copyright (e¢) 1976, 1978 by Digital Research. All rights
reserved. No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any
form or by any means, electronic, mechanical, magnetic,
optical, chemical, manual or otherwise, without the prior
written permission of Digital Research, Post Office Box 579,
Pacific Grove, California 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any
particular purpose. Further, Digital Research reserves the
right to revise this publication and to make changes from
time to time in the content hereof without obligation of
Digital Research to notify any person of such revision or
changes.

Table of Contents

ED TUTORIAL « « ¢ o+ o« o o s o
1.1 Introduction to ED . . .
1.2 Ep Operation . . . « . .

1.3 Text Transfer Functions

1.4 Memory Buffer Organization

1.5 Memory Buffer Operation

l.6 Command Strings

1.7 Text Search and Alteration

1.8 Source Libraries

1.9 Repetitive Command Execution

ED ERROR CONDITIONS + « « o

CONTROL CHARACTERS AND COMMANDS .

ii

0o N »uo v e 2=

P
N

13

14

ED USER'S MANUAL

L. ED TUTORIAL
l1.1. Introduction to ED.

ED is the context editor for CP/M, and is used to create
and alter CP/M source files. ED is initiated in CP/M by

typing

<filename>
ED
<filename>.<filetype>

In general, ED reads segments of the source file given by
<filename> or <filename> . <filetype> into central memory,
where the file is manipulated by the operator, and subse-
quently written back to disk after alterations. If the
source file does not exist before editing, it is created by
ED and initialized to empty. The overall operation of ED
is shown in Figure 1.

1.2. ED Operation

ED operates upon the source file, denoted in Figure 1
by x.y, and passes all text through a memory buffer where
the text can be viewed or altered (the number of lines which
can be maintained in the memory buffer varies with the line
length, but has a total capacity of about 6000 characters
in a 16K CP/M system). Text material which has been edited
is written onto a temporary work file under command of the
operator. Upon termination of the edit, the memory buffer
is written to the temporary file, followed by any remaining
(unread) text in the source file. The name of the original
file is changed from x.y to x.BAK so that the most recent
previously edited source file can be reclaimed if necessary
(see the CP/M commands ERASE and RENAME). The temporary
file is then changed from x.$$$ to x.y which becomes the
resulting edited file.

The memory buffer is logically between the source file
and working file as shown in Figure 2.

l1.3. Text Transfer Functions

Given that n is an integer value in the range 0 through
65535, the following ED commands transfer lines of text
from the source file through the memory buffer to the tem-
porary (and eventually final) file:

Figure 1. Overall ED Operation

(>

Source
Libraries
O X l
Source Append (R) Write Temporary
File (2) X ; (W), File
!l g Memory Buffer
;)
After | After
Eait | (B Edit (E)
|

i
i

H:
~3
H o
-0

H

ct

|| Il

ST,

Type
(T)
Backup New
File Source
File

Note: the ED program accepts both lower and upper case ASCII
characters as input from the console. $Single letter commands
can be typed in either case. The U command can be issued to

cause ED to translate lower case alphabetics to upper.case as
characters are filled to the memory buffer from the console.

Characters are echoed as typed without translation, however.
The ~U commarid causes ED to revert to "no translation" mode.

ED starts with an assumed -U in effect.

(

Figure 2.

Source File

Memory Buffer

1| First Line. 1|’ First Line®
2|\ Appended~‘\ 2 | * Buffered \
3 Llne% \\\ N L~ “\Text _

SP "‘\ T\ T —

" l L SRR
: Unprocessedltl;a?___.l Free {
| Source 1 Append I Memory |
t Lines , | Space :
b e e e ' SO —

Figure 3.

Memory Buffer

Memory Buffer Organization

Temporary File

\ First Line\
\Processed.:‘

\\ N

p—— N

N\ Text
\\\

\ \

\
ot
LAY N

Free File

{
|
[Space :
|

Logical Organization of Memory Buffer

first _________

line <cr><lf>
e e e <cr><1lf>

current _______ANe_o____

line CL

last

line <er><lt>

<ger><lf>

nA<cr>* append the next n unprocessed source
lines from the source file at SP to
the end of the memory buffer at MP.

Increment SP and MP by n.

nW<cr> - write the first n lines of the memory
buffer to the temporary file free space.
Shift the remaining lines n+l through
MP to the top of the memory buffer.
Increment TP by n.

E<cr> - end the edit. Copy all buffered text
to temporary file, and copy all un-
processed source lines to the temporary
file. Rename files as described
previously.

H<cr> - move to head of new file by performing
automatic E command. Temporary file
becomes the new source file, the memory
buffer is emptied, and a new temporary
file is created (equivalent to issuing
an E command, followed by a reinvocation
of ED using x.y as the file to edit).

O<cr> - return to original file. The memory
buffer is emptied, the temporary file
id deleted, and the SP is returned to
position 1 of the source file. The
effects of the previous editing commands
are thus nullified.

Q<cr> - quit edit with no file alterations,
return to CP/M.

There are a number of special cases to consider. If the
integer n is omitted in any ED command where an integer is
allowed, then 1 is assumed. Thus, the commands A and W append
one line and write 1 line, respectively. In addition, if a
pound sign (#) is given in the place of n, then the integer
65535 is assumed (the largest value for n which is allowed).
Since most reasonably sized source files can be contained
entirely in the memory buffer, the command #A is often issued
at the beginning of the edit to read the entire source file
to memory. Similarly, the command #W writes the entire buffer
to the temporary file. Two special forms of the A and W

*<cr> represents the carriage-~return key

commands are provided as a convenience. The command OA fills
the current memory buffer to at least half-full, while OW
writes lines until the buffer is at least half empty. It
should also be noted that an error is issued if the memory
buffer size is exceded. The operator may then enter any
command (such as W) which does not increase memory require-
ments. The remainder of any partial line read during the
overflow will be brought into memory on the next successful
append.

1.4. Memory Buffer Organization

The memory buffer can be considered a sequence of source
lines brought in with the A command from a source file. The
memory buffer has an associated (imaginary) character pointer
CP which moves throughout the memory buffer under command of
the operator. The memory buffer appears logically as shown
in Figure 3 where the dashes represent characters of the
source line of indefinite length, terminated by carriage-
return (<cr>) and line-feed (<1f>) characters, and
represents the imaginary character pointer. Note that the
CP is always located ahead of the first character of the
first line, behind the last character of the last line, or
between two characters. The current line CL is the source
A mppem——— .
line which contains the CP.

1.5. Memory Buffer Operation

Upon initiation of ED, the memory buffer is empty (ie,
CP is both ahead and behind the first and last character).
The operator may either append lines (A command) from the
source file, or enter the Eines directly from the console
with the insert command

I<cr>

ED then accepts any number of input lines, where each line
terminates with a <cr> (the <1f> is supplied automatically),
until a control-z (denoted by 4z is typed by the operator.
The CP is positioned after the last character entered. The
sequence

I<cr>

NOW IS THE<cr>
TIME FOR<cr>

ALL GOOD MEN<cr>
1z

leaves the memory buffer as shown below

NOW IS THE<cr><1lf>
TIME FOR<cr><1lf>

ALIL, GOOD MEN<cr><1lf> .t

Various commands can then be issued which manipulate the CP

or display source text in the vicinity of the CP. The
commands shown below with a preceding n indicate that an
optional unsigned value can be specified. When preceded by

t, the command can be unsigned, or have an optional preceding
plus or minus sign. As before, the pound sign (#) is replaced
by 65535. If an integer n is optional, hut not supplied,

then n=1 is assumed. Finally, if a plus sign is optional,

but none is specified, then + is assumed.

iB<cr> move CP to beginning of memory buffer

ki

+tnC<cr> - move CP by *n characters (toward front
of buffer if +), counting the <cr><1lf>
as two distinet characters

tnD<cr> - delete n characters ahead of CP if plus
and behind CP if minus.

*nK<cr> - kill (ie remove) *n lines of source text
using CP as the current reference. If
CP is not at the beginning of the current
line when K is issued, then the charac-
ters before CP remain if + is specified,
while the characters after CP remain if -
is given in the command.

inli<cr> - 1f n=0 then move CP to the beginning of
the current line (if it is not -already
there) if n#0 then first move the. CP to
the beginning of the current line, and
then move it to the beginning of -the
line which is n lines down (if +) or up
(if -). The CP will stop at the top or
bottom of the memory buffer if too large
a value of n is specified.

' tnT<cr> - If n=0 then type the contents of the
current line up to CP. If n=1 then

‘type the contents of the current line
from CP to the end of the line. If
n>1 then type the current line along
with n-1 lines which follow, if +
is specified. Similarly, if n>1 and

5 - is given, type the previous n lines,
up to the CP. The break key can be
depressed to abort long type-outs.

tn<cr> - equivalent to #nLT, which moves up or
down and types a single line

1.6. Command Strings

Any number of commands can be typed contiguously (up to
the capacity of the CP/M console buffer), and are executed
only after the <cr> is typed. Thus, the operator may use
the CP/M console command functions to manipulate the input

command :
Rubout tremove the last chéaracter
Control-U delete the entire line
Control-C re-initialize the CP/M System
Control-E return carriage for long lines

without transmitting buffer
(max 128 chars)

Suppose the memory buffer contains the characters shown
in the previous section, with the CP following the last
character of the buffer. The command strings shown below
produce the results shown to the right

Command String Effect Resulting Memory Buffer

1. B2T<cr> move to beginning
of buffer and type
‘2 lines:

"NOW IS THE

TIME FOR"

:c_\—p NOW IS THE<cr><lf>
TIME FOR<cxr><1f>
ALL GOOD MEN<cr><lf>.

2. 5C0T<cr> move CP 5 charac-
ters and type the
beginning of the
line

"NOW I"

NOW IS THE<cr><1lf>

3. 2L-T<cr> move two lines down NOW IS THE<cr><1lf> .
and type previous TIME FOR<cr><lf>

line
"TIME FOR" | ALL GOOD MEN<cr><1lf>
4. -L#K<cr> move up one line, NOW IS THE<cr><lf>
delte 65535 lines
which follow
5. I<cr> insert two lines NOW IS THE<cr><1lf>
TIME TO<cr> of text
INSERT< or> TIME TO<cr><lf>

tz INSERT<cr><lf>

6. =2L#T<cr> move up two lines, NOW IS THE<cr><1f>

and type 65535
lines ahead of CP TINE To<axs<liz

"NOW IS THE" INSERT<cr><1lf>
T« <E¥r> move down one line NOW IS THE<cr><1lf>
and type one line
" TNSERT" TIME TO<cr><1lf> Cch
INSERT<cr><1lf>

1l.7. Text Search and Alteration

ED also has a command which locates strings within the
memory buffer. The command takes the form

<cr>
nF clcz...ck { P

where c; through cyx represent the characters to match followed
by either a <cr> or control -z°. ED starts at the current
position of CP and attempts to match all k characters. The
match is attempted n times, and if successful, the CP is

moved directly after the character cp. If the n matches are
not successful, the CP is not moved §rom its initial position.
Search strings can include 41 (control-l), which is replaced
by the pair of symbols <cr><1lf>.

*The control-z is used if additional commands will be typed ‘
following the +z.

The following commands illustrate the use of the F
command :

Command String Effect Resulting Memory Buffer
1. B#T<cr> move to beginning NOW IS THE<cr><1lf>
and type entire
T TIME FOR<cr><1lf>
ALL GOOD MEN<cr><l1lf>
2. FS T<ecrx> find the end of NOW IS THE<cr><l~f>
the string "S T"
3. FI+20TT find the next "I" NOW IS THE<cr><1lf>
and type to the
CP then type the 1 ME FOR<cr><lf>
remainder of the ALL GOOD MEN<cr><1lf>
current line:
"TIME FOR"

An abbreviated form of the insert command is also allowed,
which is often used in conjunction with the F command to make
simple textual changes. The form is:

I clcz... cn+z or

I e4¢

e e 0 c <cr>
172 n

where c; through c, are characters to insert. If the inser-
tion string is terminated by a *z, the characters c; through
cp are inserted directly following the CP, and the CP is
moved directly after character c,. The action is the same.
if the command is followed by a <cr> except that a <cr><1lf>
is automatically inserted into the text following character
Cpe Consider the following command sequences as examples

of the F and I commands:

Command String Effect Resulting Memory Buffer
BITHIS IS tz<cr> Insert "THIS IS " THIS IS NOW THE <cr><1lf>
at the beginning
of the text

TIME FOR<cr><lf>
ALL GOOD MEN<cr><1lf>

FTIME+z~-4DIPLACEtz<cr> THIS IS NOW THE<cr><1lf> ')

find "TIME" and delete PLACECCE]’FOR<cr><1f>
it; then insert "PLACE" ALL GOOD MEN<cr><lf>

3FO+2-3D5DICHANGES t+<cr> THIS IS NOW THE <cr><1lf>

find third occurrence PLACE FOR<cr><lf>

of "O" (ie the second ALL CHANGES <cr><lf>
"O" in GOOD), delete

previous 3 characters;

then insert "CHANGES"

—-8CISOURCE<cx> move back 8 .characters THIS IS NOW THE<cr><1lf>
and insert the line PLACE FOR<er><1f>

"SOURCE<cr><1f>"
ALL SOURCE<cr><1lf>

CHANGES<cr><lf>

ED also provides a single command which combines the F and
I commands to perform simple string substitutions. The command
takes the form

<er>
ns clcz...ck+z dldz"'dm { rz

and has exactly the same effect as applying the command string

. Qx>
F c eeaC &z kDIdldz"'dm {

1€2 ki ‘2z

a total of n times. That is, ED searches the memory buffer
starting at the current position of CP and successively sub-
stitutes the second string for the first string until the
end of buffer, or until the substitution has been performed
n times.

As a convenience, a command similar to F is provided by
ED which automatically appends and writes lines as the search
proceeds. The form is

cxr
n N g GOy {+z}

which searches the entire source file for the nth occurrence
of the string cjcjy...cx (recall that F fails if the string
cannot be found in the current buffer). The operation of the

10

W command is precisely the same as F except in the case that
the string cannot be found within the current memory buffer.
In this case, the entire memory contents is written (ie, an
automatic #W is issued). Input lines are then read until
the buffer is at least half full, or the entire source file
is exhausted. The search continues in this manner until the
string has been found n times, or until the source file has
been completely transferred to the temporary file.

A final line editing function, called the juxtaposition
command takes the form

<Lor>
ndJd clcz...ck+z dldz...dm+z elez...eq {:$z.}

with the following action applied n times to the memory buffer:
search from the current CP for the next occurrence of the
string C1C...C . If found, insert the string dydg...,dn,

and move C to follow dp. Then delete all characters following
CP up to (but not including) the string e; 1€27+..€ leaving

CP directly after dp. If ej,ej,...e cannot be fognd then

no deletion is made. If the current'line is

NOW IS THE TIME<cr><1lf>

Then the command
JW 4zWHAT#4z4l<cr>
Results in

NOW WHAT <er><lf>

(Recall that 41 represents the pair <cr><1lf> in search and
substitute strings).

It should be noted that the number of characters allowed
by ED in the F,S,N, and J commands is limited to 100 symbols.

1.8. Source Libraries
ED also allows the inclusion of source libraries during

the editing process with the R command. The form of this
command is

i3

RE. T

1 2..fn+z or

R I.tL

1 2..fn<cr>

where f;f;..f, is the name of a source file on the disk with
as assumed filetype of 'LIB'. ED reads the specified file,
and places the characters into the memory buffer after CP,
in a manner similar to the I command. Thus, if the command

RMACRO<cr>

is issued by the operator, ED reads from the file MACRO.LIB
until the end-of-file, and automatically inserts the charac-
ters into the memory buffer.

1.9. Repetitive Command Execution

The macro command M allows the ED user to group ED com-
mands together for repeated evaluation. The M command takes

the form:
<cr>
n M clcz...ck {+z}

where cjcjy...cy represent a string of ED commands, not inclu-
ding another M command. ED executes the command string n
times if n>1. If n=0 or 1, the command string is executed
repetitively until an error condition is encountered (e.g.,
the end of the memory buffer is reached with an F command) .
As an example, the following macro changes all occur-
rences of GAMMA to DELTA within the current buffer, and
types each line which is changed:

MFGAMMA+2z-5DIDELTA+z0TT<cr>

or equivalently

MSGAMMA+4zDELTA4z0TT<cr>

12

. 2. ED ERROR CONDITIONS

On error conditions, ED prints the last character read
before the error, along with an error indicator:

? unrecognized command

> memory buffer full (use one of
the commands D,K,N,S, or W to
remove characters), F,N, or S
strings too long.

cannot apply command the number
of times specified (e.g., in
F command)

o cannot open LIB file in R
command

Cyclic redundancy check (CRC) information is written with
each output record under CP/M in order to detect errors on
subsequent read operations. If a CRC error is detected, CP/M
will type

‘ PERM ERR DISK d

where d is the currently selected drive (A,B,...). The oper-
ator can choose to ignore the error by typing any character
at the console (in this case, the memory buffer data should
be examined to see if it was incorrectly read), or the user
can reset the system and reclaim the backup file, if it
exists. The file can be reclaimed by first typing the con-
tents of the BAK file to ensure that it contains the proper
information:

TYPE x.BAK<cr>

where x is the file being edited. Then remove the primary
file:

ERA x.y<cr>
and rename the BAK file:
REN x.y=X.BAK<cr>

The file can then be re-edited, starting with the previous
' version.

13

3. CONTROL CHARACTERS AND COMMANDS

The following table summarizes the control characters
and commands ayvailable in ED:

Control Character Function
te system reboot
te ‘physical <cr><1lf> (not
actually entered in
command)
41 logical tab (cols 1,8,
15,...)
+1 logical <cr><1lf> in
search and substitute
strings
+u line delete
+z string terminator
rubout character delete
break discontinue command

(e.g., stop typing)

14

Command Function

nA append lines

+B begin bottom of buffer
+nC move character positions
+nD delete characters

E end edit and close files

(normal end)

nF find string
H end edit, close and reopen
files
I insert characters
nJ place strings in juxtaposition
+nK kill lines
+nL move down/up lines
nM macro definition
nN find next occurrence with
autoscan
o return to original file
+nP move and print pages
Q quit with no file changes
R read library file
ns substitute strings
+n'T type lines
ty translate lower to upper case if U,
no translation if -U
nw write lines
nz sleep
tn<cr> move and type (#nLT)

15

Appendix A: ED 1.4 Enhancements

The ED context editor contains a number of commands which enhance its
usefulness in text editing. The improvements are found in the addition of line numbers,
free space interrogation, and improved error reporting.

The context editor issued with CP/M 1.4 produces absolute line number prefixes
when the "V" (Verify Line Numbers) command is issued. Following the V command,
the line number is displayed ahedd of each line in the format:

nnnnn:

where nnnnn is an absolute line number in the range 1 to 65535, If the memory buffer
is empty, or if the current line is at the end of the memory buffer, then nnnnn appears
as 5 blanks.

. The user may reference an absolute line number by preceding any command by
a number followed by & colon, in the same format as the line number display. In this
case, the ED program moves the current line reference to the absolute line number,
if the line exists in the current memory buffer. Thus, the command

345:T

is interpreted as "move to absolute line 345, and type the line.” Note that absolute
line numbers are produced only during the ed1t1ng process, and are not recorded with
the file. In particular, the line numbers will change following a deleted or expanded
section of text.

The uyser may also reference an absolute line number as a backward or forward
distance from the current line by preceding the absolute line number by a colon. Thus,
the command

:400T

is interpreted as "type from the current line number through the line whose absolute
numbér is 40@." Combining the two line reference forms, the command

345::409T
for example, is interpreted as "move to absolute line 345, then type through absolute
line 400." Note that absolute line references of this sort can precede any of the
standard ED commands.

A special case of the V command, "#V", prints the memory buffer statisties in
the form:

free/total

where "free" is the number of free bytes in the memory buffer (in decimal), and "total"
is the size of the memory buffer.

ED 1.4 also includes a "block move" facility implemented through the "X" (Xfer)
command. The form

nX
transfers the next n lines from the current line to a temporary file called

X$$$$$$$.LIB

which is active only during the editing process. In general, the user can reposition
the current line reference to any portion of the source file and transfer lines to the
temporary file. The transferred line accumulate one after another in this file, and
can be retrieved by simply typing:

R

which is the trivial case of the library read command. In this case, the entire
transferred set of lines is read into the memory buffer. Note that the X command
does not remove the transferred lines from the memory buffer, although a K ecommand
can be used directly after the X, and the R command does not empty the transferred
line file. That is, given that a set of lines has been transferred with the X command,
they can be re-read any number of times back into the source file. The command

Ax
is provided, however, to empty the transferred line file.

Note that upon normal completion of the ED program through Q or E, the
temporary LIB file is removed. If ED is aborted through ctl-C, the LIB file will exist
if lines have been transferred, but will generally be empty (a subsequent ED invocation
will erase the temporary file).

Due to common typographical errors, ED 1.4 requires several potentially disas-
terous commands to be typed as single letters, rather than in composite commands.
The commands

E (end), H (head), O (original), Q (quit)
must be typed as single letter commands.

ED 1.4 also prints error messages in the form

BREAK "x" AT ¢

where x is the error character, and c¢ is the command where the error occurred.

= S

P (=

e
e i
e e T

ey e
B Uy e -

e L N RTaa s ey b
= iy N_L'-'E\ LS ")’3‘.. A" T

S et
S

et

1‘1%\{;'*‘:“\
5 e

N e

L 22 .

I} BDIGITAL RESEARCH

.Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M 2.0 ALTERATION GUIDE

Copyright (e) 1979

DIGITAL RESEARCH

Copyright

Copyright (¢) 1979 by Digital Research. All rights reserved.
No part of this publication mayv be reproduced, transmitted,
transeribed, stored in a retrieval system, or translated into
any language or computer language, in any form or by any
means, electronie, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written permission of
Digital Research, Post Office Box 579, Pacific Grove,
California 93950,

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any parti-
cular purpose. Further, Digital Research reserves the right
to revise this publication and to make changes from time to
time in the content hereof without obligation of Digital
Research to notify any person of such revision or changes.

Trademarks

CP/M is a registered trademark of Digital Research. MP/M,
MAC, and SID are trademarks of Digital Research.

CP/M 2.0 ALTERATION GUIDE

Copyright (c) 1979
Digital Research, Box 579
Pacific Grove, California

Introduction ¢ ¢ + & .«
First Level System Regeneration .,
Second Level System Generation .,
Sample Getsys and Putsys Programs
Diskette Organization .,
The BIOS Entry Points
A Sample BIOS o« « =« « « s & ».% »
A Sample Cold Start Loader . . .
Reserved Locations in Page Zero .
Disk Parameter Tables .,
The DISKDEF Macro Library
Sector Blocking and Deblocking .

Appendix A

Appendix

Appendix

Appendix

Appendix

Appendix
Appendix

QEmEoOow

e e e o o e o

e e o e o o oo

10
12
14
21
22
23
25
39
34
36
39
50
59

61
66

i

1. INTRODUCTION

The standard CP/M system assumes operation on an Intel MDS-300
microcomputer development system, but is designed so that the user can
alter a specific set of subroutines which define the hardware
operating environment, In this way, the user can produce a diskette
which operates with any IBM-3741 format compatible drive controller
and other peripheral devices.

Altnough standard CP/M 2.0 is configured for single density floppy
disks, field-alteration features allow adaptation to a wide variety of
disk subsystems from single drive minidisks through high-capacity
"hard disk" systems,. In order to simplify the following adaptation
process, we assume that CP/M 2.0 will first be configured for single
density floppy disks where minimal editing and debugging tools are
available. If an earlier version of CP/M 1is available, the
customizing process is eased considerably. 1In this latter case, you
may wish to briefly review the system generation process, and skip to
later sections which discuss system alteration for non-standard disk
systems.

In order to achieve device independence, CP/M 1is separated into
three distinct modules:

BIOS - pbasic I/0 system which is environinent dependent

BDOS - basic disk operating system which is not dependent
upon the hardware configuration

CCP - the console command processor which uses the BDOS

Of these modules, only the BIOS is dependent upon the particular
hardware. That is, the user can "patch" the distribution version of
CP/M to provide a new BIOS which provides a customized interface
between the remaining CP/M modules and the user's own hardware system.
The purpose of this document is to provide a step-by-step procedure
for patching your new BIOS into CP/M.

If CP/M is being tailored to your computer system for the first

time, the new BIOS requires some relatively simple software
development and testing. The standard BIOS is listed in Appendix B,
and can be used as a model for the customized package. A skeletal

version of the BIOS 1is given in Appendix C which can serve as the
basis for a modified BIOS. In addition to the BIOS, the wuser must
write a simple memory loader, called GETSYS, which brings the
operating system into memory. In order to patch the new BIOS into
CP/M, the user must write the reverse of GETSYS, called PUTSYS, which
places an altered version of CP/M back onto the diskette., PUTSYS can
be derived from GETSYS by changing the disk read commands into disk
write commands. Sample skeletal GETSYS and PUTSYS programs are
described in Section 3, and listed in Appendix D. In order to make
the CP/M system work automatically, the user must also supply a cold
start 1loader, similar to the one provided with CP/M (listed in
Appendices A and B). A skeletal form of a cold start loader is given
in Appendix E which can serve as a model for your loader.

(All Information Contained Herein is Proprietary to Digital Research.)

1

2, FIRST LEVEL SYSTEM REGENERATION

The procedure to follow to patcn the CP/M system is given below in
several steps. Address references in each step are shown with a
following "H" which denotes the hexadecimal radix, and are given for a
20K CP/M system. For larger CP/M systems, add a "bias" to each
address which is shown with a "+b" following it, where b is equal to

tne memory size - 20K. Values for b in various standard memory sizes
are

24K: b = 24K - 20K = 4K = 1000H
32K b = 32K - 20K = 12K = 30004
49K: b = 49K - 20K = 20K = 5000H
48K: b = 48K - 20K = 28K = 7000H
56K: b = 56K - 20K = 36K = 9000H
6 2K: b = 62K - 20K = 42K = A800H
04K: b = 64K - 20K = 44K = BOOOH

Note: The standard distribution version of CP/M 1is set for
operation within a 20K memory system. Therefore, you must first bring
up the 20K CP/M system, and then configure it for your actual memory
size (see Second Level System Generation),.

(1) Review Section 4 and write a GETSYS program which reads the
first two tracks of a diskette into memory. The data from the diskette
must begin at location 338¢H. Code GETSYS so that it starts at
location 10@H (pase of the TPA), as shown in the first wvart of
Appendix d.

(2) Test the GETSYS program by reading a blank diskette into
memory, and check to see that the data has been read properly, and
that the diskette has not been altered in any way by the GETSYS
program,

(3) Run the GETSYS program using an initialized CP/M diskette to
see 1if GETSYS 1loads CP/M starting at 3380H (the operating system
actually starts 128 bytes later at 3400H).

(4) Review Section 4 and write the PUTSYS prodram which writes
memory starting at 3380H back onto the first two tracks of the
diskette., The PUTSYS program should be located at 20@H, as shown in
the second part of Appendix D.

(5) Test the PUTSYS program using a blank uninitialized diskette
by writing a portion of memory to the first two tracks; clear memory
and read it back using GETSYS. Test PUTSYS completely, since this
program will be used to alter CP/M on disk.

(6) Study Sections 5, 6, and 7, along with the distribution
version of the BIOS given in Appendix B, and write a simple version
which performs a similar function for the customized environment. Use
the program given in Appendix C as a model. Call this new BIOS by the
name CBIOS (customized BIOS). Implement only the primitive disk
operations on a single drive, and simple console input/output
functions in this phase.

(All Information Contained Herein is Proprietary to Digital Research.)

2

(7) Test CBIOS completely to ensure that it nproperly performs
console character I/O and disk reads and writes. Be especially
careful to ensure that no disk write operations occur accidently
during read operations, and check that the proper track and sectors
are addressed on all reads and writes, Failure to make these checks
may cause destruction of the initialized CP/M system after it is
patched.

(3) Referring to Figure 1 in Section 5, note that the BIOS is
placed between locations 4A0@¥H and 4FFFH. Read the CP/M system using
GETSYS and replace the BIOS segment by the new CBIOS developed in step
(6) and tested in step (7). This replacement is done in the memory of
the machine, and will be placed on the diskette in the next step.

(9) Use PUTSYS to pblace the patched memory image of CP/M onto the
first two tracks of a blank diskette for testing,

(19) Use GETSYS to bring the copied memory image from the test
diskette back into memory at 3380H, and check to ensure that it has
loaded back properly (clear memory, if possible, before the 1load).
Upon successful load, brancn to the cold start code at location 4AdUH.
The cold start routine will initialize page zero, then jumo to the CCP
at location 34PV¥H which will call the BDOS, which will call the CBIOS.
The CBIOS will be asked by the CCP to read sixteen sectors on track 2,
and if successful, CP/M will type "A>", the system prompt.

wWwhen you make it this far, you are almost on the air. If you have
trouble, use whatever debug facilities you have available to trace and
breakpoint your CBIOS.

(11) Upon completion of step (10), CP/M has promoted the console
for a command input. Test the disk write operation by typing

SAVE 1 X.COM
(recall that all commands must be followed by a carriage return),.
CP/M should respond with another prompt (after several disk accesses):
A>
If it does not, debug your disk write functions and retry.
(12) Then test the directory command by typing
DIR
CP/M should respond with
A: X CoM
(13) Test the erase command by typing

ERA X.COM

(All Information Contained Herein is Proprietary to Digital Research,)

3

CP/M should respond with the A prompt. When you make it this far, you
should have an operational system which will only require a bootstrap
loader to function completely.

(14) Write a bootstrap loader which is similar to GETSYS, and
place it on track #®, sector 1 using PUTSYS (again using the test
diskette, not the distribution diskette). See Sections 5 and 8 for
more information on the bootstrap operation,

(15) Retest the new test diskette with the bootstrap loader
installed by executing steps (11), (12), and (13). Upon completion of
these tests, type a control-C (control and C keys simultaneously). The
system should then execute a "warm start" which reboots the system,
and types the A prompt.

(16) At this point, you probably have a good version of your
customized CP/M system on your test diskette. Use GETSYS to load CP/M
from vyour test diskette. Remove the test diskette, place the
distribution diskette (or a legal copy) into the drive, and use PUTSYS
to replace the distribution version by your customized version, Do
not make this replacement if you are unsure of your patch since this
step destroys the system which was sent to you from Digital Research.

(17) Load your modified CP/M system and test it by typing
DIR

CP/4 should respond with a list of files which are provided on the
initialized diskette, One such file should be the memory image for
the debugger, called DDT.COM.

NOTE: from now on, it is important that you always reboot the CP/M
system (ctl-C is sufficient) when the diskette is removed and replaced
by another diskette, unless the new diskette is to be read only.

(18) Load and test the debugger by typing
DDT

(see the document "CP/M Dynamic Debugging Tool (DDT)" for operating
procedures, You should take the time to become familiar with DDT, it
will be your pbest friend in later steps.

(19) Before making further CBIOS modifications, practice using
the editor (see the ED wuser's guide), and assembler (see the ASM
user's guide). Then recode and test the GETSYS, PUTSYS, and CBIOS
programs using ED, ASM, and DDT. Code and test a COPY program which
does a sector-to-sector copy from one diskette to another to obtain
back=-up copies of the original diskette (NOTE: read your CP/M
Licensing Agreement; it specifies vyour 1legal responsibilities when
copying the CP/M system). Place the copyright notice

Copyright (c¢), 1979
Digital Research

(All Information Contained Herein is Proprietary to Digital Researcn.)

4

“

on each copy which is made with your COPY program,

(20) Modify wyour CBIOS to include the extra functions for
punches, readers, signon messages, and so-forth, and add the
facilities for a aaditional disk drives, if desired. You can make
these changes with the GETSYS and PUTSYS programs which you have
developed, or vyou can refer to the following section, which outlines
CP/M facilities which will aid you in the regeneration process.

You now have a good copy of the customized CP/M system. Note that
although the CBIOS portion of CP/M which you have develooed belongs to
you, the modified version of CP/M which you have created can be copied
for vyour use only (again, read your Licensing Agreement), and cannot
be legally copied for anyone else's use,

It should be noted that your system remains file-compatible with all

other CP/M systems, (assuming media compatiblity, of course) which
allows transfer of non-pbropr.ietary software between users of CP/M.

(All Information Contained Herein is Proprietary to Digital Research.)

5

3. SECOND LEVEL SYSTEM GENERATION

Now that you have the CP/M system running, you will want to
configure CP/M for your memory size. In general, you will first get a
memory image of CP/M witnh the "MOVCPM" program (system relocator) and
olace this memory image into a named aisk file. The disk file can then
be loaded, examined, patched, and replaced using the debugger, and
system generation program. For further details on the operation of
these programs, see the "Guide to CP/M Features and Facilities"
manual.

Your CBIOS and BOOT can be modified using ED, and assembled using
ASM, producing files called CBIOS.,HEX and BOOT.HEX, which contain the
machine code for CBIOS and BOOT in Intel hex format,

To get the memory image of CP/M into the TPA configured for the
desired memory size, give the command:

MOVCPM xx *

where "xx" is the memory size in decimal K bytes (e.g., 32 for 32K).
The response will pe:

CONSTRUCTING xxK CP/M VERS 2.0
READY FOR "SYSGEN" OR
“SAVE 34 CPMxx.COM"

At this point, an image of a CP/M in the TPA configured for the
requested memory size. The memory image is at location #900vH through
227Fd. (i.e., The BOOT is at @#909H, the CCP is at 98@H, the BDOS
starts at 1180H, and the BIOS is at 1F80H.) Note that the memory
image has the standard MDS-80©Y BIOS and BOOT on it, It 1is now
necessary to save the memory image in a file so that you can patch
your CBIOS and CBOOT into it:

SAVE 34 CPMxx.COM

The memory image created by the "MOVCPM" program is offset by a
negative bias so that it loads into the free area of the TPA, and thus
does not interfere with the operation of CP/M in higher memory. This
memory image can pbe subsequently loaded under DDT and examined or
changed in preparation for a new generation of the system., DDT is
loaded with the memory image by typing:

DDT CPMxx.COM Load DDT, then read the CPM

image

DDT should respond with
NEXT PC
2300 0100

= (The DDT prompt)

You can then use the display and disassembly commands to examine

(All Information Contained Herein is Proprietary to Digital Research.)

6

«

portions of the memory image between 99¢H and 227FH. Note, however,
that to find any particular address within the memory image, you must
apply the negative bias to the CP/M address to find the actual
address., Track 9?0, sector ¥l is loaded to location 9@G@GH (you shoula
find the cold start loader at 990H to 97FH), track 9@, sector ¥2 is
loaded into 980H (this is the base of the CCP), and so-forth through
the entire CP/M system load. In a 20K system, for example, the CCP
resides at the CP/M address 3400H, but is placed into memory at 980H
by the SYSGEN program. Thus, the negative bias, denoted by n,
satisfies

3400H + n = 980H, or n = 980H - 3490H

Assuming two's complement arithmetic, n = D58#¥H, which can be checked
by

3400H + D58@GH = 1@980H = P98PH (ignoring high-order
overflow).

Note that for larger systems, n satisfies

34p@H+b) + n = Y8PYH, or
98¢YH - (3469H + b), or

(
n
n D58@H - b.

The value of n for common CP/M systems is given below

memory size bias b negative offset n
20K ¥oYoH D58YH - V@POYH = D580H
24K 19004 D58PH - 1900H = C53VH
32K 3000H D580H - 3090H = A58dH
40K 50004 D58¥UH - 500V¥H = 8580H
48K 79 00H D58UH - 7000H = 6580H
56K 990 0H D58VH - YUPUPH = 4580H
6 2K AB@0H D580VH - A8dWH = 2D8PH
64K BO@OH D580H - B0J0H = 2580H

Assume, for example, that you want to locate the address x within the
memory image loaded under DDT in a 20K system, First type

Hx,n Hexadecimal sum and difference
and DDT will respond with the value of x+n (sum) and x-n (difference).
The first number printed by DDT will be the actual memory address in
the image where the data or code will be found. The input

H3400,D580

for example, will produce 98¥H as the sum, which is where the CCP 1is
located in the memory image under DDT.

Use the L command to disassemble portions the BIOS 1located at
(4APPH+D) =n which, when vyou use the H command, produces an actual
address of 1F89H. The disassembly command would thus be

(All Information Contained Herein is Proprietary to Digital Research.)

7

L1F89
It is now necessary to vatch in your CBOOT and CBIOS routines. The
BOOT resides at 1location @90¥H in the memory image. If the actual
load address is "n", then to calculate the bias (m) use the command:

H900,n Subtract load address from
target address.

The second number tyved in response to the command is the desired bias
(m), For example, if your BOOT executes at ¥W@PB80UH, the command:

H961Y,860
will reply
P98W V88E Sum and difference in hex.

Therefore, the bias “m" would be 0U88¥H. To read-in the BOOT, give the
command:

ICBOOT.HEX Input file CBOOT.HEX
Then:
Rm Read CBOOT with a bias of
m (=944H-n)

You may now examine your CBOOT with:
L9090

We are now ready to replace the CBIOS. Examine the area at 1Fr80H
where the original version of the CBIOS resides. Then type

ICBIOS.HEX Ready the "hex" file for loading

assume that your CBIOS is being integrated into a 20K CP/M system, and
thus is origined at location 4A@0H. 1In order to properly 1locate the
CBIOS in the memory image under DDT, we must apply the negative bias n
for a 20K system when loading the hex file. This is accomplished by

typing
RD53849 Read the file with bias D586GH

Upon completion of the read, re-examine the area where the CBIOS has
peen loaded (use an “L1F80" command), to ensure that is was loaded
properly. When you are satisfied that the change has been made,
return from DDT using a control-C or “G@" command.

Now use SYSGEN to replace the patched memory image back onto a

diskette (use a test diskette until you are sure of your patch), as
shown in the following interaction

(All Information Contained Herein is Proprietary to Digital Research.)

.8

SYSGEN Start the SYSGEN program
SYSGEN VERSION 2.0 Sign-on message from SYSGEN

SOURCE DRIVE NAME (OR RETURN TO SKIP)
Resoond with a carriage return

to skip the CP/M read operation
since the system is already in
memory.

DESTINATION DRIVE NAME (OR RETURN TO REBOOT)
Respond with "B" to write the
new system to the diskette in
drive B.

DESTINATION ON B, THEN TYPE RETURN
Place a scratch diskette in
drive B, then type return,

FUNCTION COMPLETE

DESTINATION DRIVE NAME (OR RETURN TO REBOOT)

Place the scratch diskette in your drive A, and then perform a
coldstart to bring up the new CP/M system you have configured.

Test the new CP/M system, and place the Digital Research copyright
notice on the diskette, as specified in your Licensing Agreement:

Copyright (c), 1979
Digital Research

4, SAMPLE GETSYS AND PUTSYS PROGRAMS

The following program provides a framework for the GETSYS and
PUTSYS programs referenced in Section 2, The READSEC and WRITESEC
subroutines must be inserted by the wuser to read and write the
specific sectors.

GETSYS PROGRAM - READ TRACKS @ AND 1 TO MEMORY AT 3380H

14
; REGISTER USE
: A (SCRATCH REGISTER)
; B TRACK COUNT (8, 1)
; c SECTOR COUNT (1,2,....,26)
7 DE (SCRATCH REGISTER PAIR)
H HL LOAD ADDRESS
; Sp SET TO STACK ADDRESS
’
START: LXI SP,3380H ;SET STACK POINTER TO SCRATCH AREA
LXI H, 3380H ;SET BASE LOAD ADDRESS
MVI B, © s START WITH TRACK ¥
RDTRK ¢ ;READ NEXT TRACK (INITIALLY 9)
MVI Cpl ;READ STARTING WITH SECTOR 1
RDSEC: ;READ NEXT SECTOR
CALL READSEC ;USER-SUPPLIED SUBROUTINE
LXI D,1238 ;MOVE LOAD ADDRESS TO NEXT 1/2 PAGE
DAD D ;HL = HL + 128
INR 6 ;SECTOR = SECTOR + 1
MOV A,C ;CHECK FOR END OF TRACK
CP1 217
JC RDSEC ;CARRY GENERATED IF SECTOR < 27
’
; ARRIVE HERE AT END OF TRACK, MOVE TO NEXT TRACK
INR B
MOV A,B ;TEST FOR LAST TRACK
CpI 2
JC RDTRK ;CARRY GENERATED IF TRACK < 2

-e we

ARRIVE HERE AT END OF LOAD, HALT FOR NOW
HLT

USER-SUPPLIED SUBROUTINE TO READ THE DISK
EADSEC:
ENTER WITH TRACK NUMBER IN REGISTER B,
SECTOR NUMBER IN REGISTER C, AND
ADDRESS TO FILL IN HL

e we weo we wwo -e

PUSH B ;SAVE B AND C REGISTERS
PUSH H ;SAVE HL REGISTERS

perform disk read at this point, branch to

label START if an error occurs

POP H ;RECOVER HL

POP B ;RECOVER B AND C REGISTERS
RET ;BACK TO MAIN PROGRAM

END START

(All Information Contained Herein is Proprietary to Digital Research,)

10

Note that this program is assembled and listed in Appendix C for
reference purposes, with an assumed origin of 100H. The hexadecimal
operation codes which are listed on the left may be wuseful 1if the
program has to be entered through your machine's front panel switches.

The PUTSYS program can be constructed from GETSYS by changing only
a few operations in the GETSYS program given above, as shown in
Appendix D. The register pair HL become the dump address (next
address to write), and operations upon these registers do not change
within the program. The READSEC subroutine is replaced by a WRITESEC
subroutine which performs the opposite function: data from address HL
is written to the track given by register B and sector given by
register C, It is often useful to combine GETSYS and PUTSYS into a

single program during the test and development phase, as shown in the
Appendix,

(All Information Contained Herein is Proprietary to Digital Research.)

14

5. DISKETTE ORGANIZATION

The sector allocation for the standard distribution version of
CP/M 1is given here for reference purposes. The first sector (see
table on the following page) contains an optional software boot
section. Disk controllers are often set uo to bring track @, sector 1
into memory at a specific location (often location @0@0H). The
program in this sector, <called BOOT, has the responsibility of
bringing the remaining sectors into memory starting at location
34p0i+b. If your controller does not have a built-in sector load, you
can ignore the program in track 9, sector 1, and begin the 1load from
track 4 sector 2 to location 34@dH+b.

As an example, the Intel MDS-800 hardware cold start loader brings
track ¥, sector 1 into absolute address 30006H. Upon loading this
sector, control transfers to location 3000H, where the bootstrap
operation commences by loading the remainder of tracks 4, and all of
track 1 into memory, starting at 340UH+b. The user should note that
tnis bootstrap loader is of 1little use in a non-MDS environment,
although it 1is wuseful to examine it since some of the boot actions
will have to be duplicated in your cold start loader.

(A1l Information Contained Herein is Proprietary to Digital Research.)

12

Track# Sector# Page# Memory Address CP/M Module name

/X0 01 (boot address) Cold Start Loader
00 32 0a 340 WUH+Db . CCP
- 03 " 3480H+b .

" 24 01 3500H+b i

" 05 - 3580H+b 9

. 26 62 3600H+D .

: 07 . 3680H+b :

' 8 23 376VH+D °

' B9 _ " 3780H+b e

' 10 g4 3800H+Db 2

" 11 i 3880H+b "

" 12 25 3900H+b .

" 13 . 3980H+b 8

“ 14 @6 3A0PH+b "

" 15 " 3A80H+b «

. 16 37 3B00H+b o
00 17 “ 3B80¥H+b Cccp
/1] 18 a8 3Cd0H+Db BDOS

. 19 K 3C80H+b "

v 20 29 3DGPH+b -

" 21 " 3D8@H+b "

. 22 10 3EJ0H+b o

" 23 " 3E8AH+Db *

" 24 11 3F0QH+b u

" 25 " 3F80H+b =

" 26 12 4300H+Db ®
g1 21 " 4080H+b "

" 22 13 4100H+b =

H 03 " 4180H+b =

" 24 14 4200H+Db »

" 25 " 42806H+Db N

= J6 15 430dH+b -

" a7 " 4380H+Db "

" 08 16 4400H+b o

- 09 = 4480H+b -

" 19 17 450 90H+Db "

" 11 " 4583H+b "

" 12 18 4600H+b N

" 13 . 4680H+Db o

“ 14 19 4700H+b "

" 15 " 4780H+b -

. 16 20 4800H+b “

" 17 " 4880H+Db £

" 18 21 490 0H+b -

g1 19 i 4980H+b BDOS

21 20 22 4A0@H+Db BIOS

. 21 " 4A80H+b N

“ 23 23 4B@@H+Db =

“ 24 . 4B8@H+b "

& 25 24 4CO0OH+Db "

g1 26 o 4C8(@H+b BIOS

d2-76 B1-26 (directory and data)

(All Information Contained Herein is Proprietary to Digital Research.)

6. THE BIOS ENTRY POINTS

BIOS £
the BI

into the
Entry to
as shown below

The entry points
are detailed below.
located at 4Ad9H+b,
The jump vector is a sequence of 1
program control to the individua
subroutines may be empty for certain
a single RET operation) during regen
must be present in the jump vector,

The jump vector at 4AUQH+b takes
individual jump addresses are given

4ADPH+D JMp BOOT i
4AQ3d+D JMP WBOOT ;
47 6H+b JMP CONST ;
4AQ9H+b JMP CONIN -
4A9CH+b JMP CONOUT :
4APFH+D JMP LIST :
4A12H+b JMP PUNCH .
4A15H+b JMP READER s
4A18H+b JMP HOME .
4A1BH+bH JMP SELDSK :
4A1Eid+0 JMP SETTRK 5
4A21H+pD JMP SETSEC .
4A24H+Db JMP SETDMA o
4A27H+b JMP READ ;
4AZAH+D JMP WRITE 2
4A2DH+Db JMP LISTST &
4A3QH+b JMP SECTRAN 5
Each jumo address corresponds to
performs the specific function, a
major divisions in the jump table:
which results from calls on BOO

performed by calls on CONST, CONIN,
LISTST, and diskette I/0 verformed
SETSEC, SETDMA, READ, WRITE, and SEC

All simple character I/0 operati
ASCII, upper and lower case, with hi
An end-of-file condition for an
control-z (lAH). Peripheral devices
devices, and are assigned to physica

In order to operate, the BDOS ne
CONOUT subroutines (LIST, PUNCH,
not the BDOS). Further, the LISTST
DESPOOL, and thus, the initial
subroutines for the remaining ASCII

(All Information Contained Herein is

14

rom the cold start loader and BDOS
0S 1is through a "jump vector"”
(see Appendices B and C, as well).
7 Jjumop instructions which send
1 BIOS subroutines, The BIOS
functions (i.e., they may contain
eration of CP/M, but the entries

the form shown bele, where the

to the left:

ARRIVE HERE FROM COLD START LOAD
ARRIVE HERE FOR WARM START

CHECK FOR CONSOLE CHAR READY
READ CONSOLE CHARACTER IN

WRITE CONSOLE CHARACTER OUT
WRITE LISTING CHARACTER OUT
WRITE CHARACTER TO PUNCH DEVICE
READ READER DEVICE

MOVE TO TRACK 9@ ON SELECTED DISK
SELECT DISK DRIVE

SET TRACK NUMBER

SET SECTOR NUMBER

SET DMA ADDRESS

READ SELECTED SECTOR

WRITE SELECTED SECTOR

RETURN LIST STATUS

SECTOR TRANSLATE SUBROUTINE

a particular subroutine which

s outlined below, There are three

the system (re)initialization

T and WBOOT, simple character I/0

CONOUT, LIST, PUNCH, READER, and

by calls on HOME, SELDSK, SETTRK,
TRAN,

ons are assumed to be performed in
gh order (parity bit) set to zero.
input device is given by an ASCII
are seen by CP/M as "logical"®
1l devices within the BIOS.

eds only the CONST, CONIN, and
and READER may be used by PIP, but
entry is used currently only by
version of CBIOS may have empty
devices.

Proprietary to Digital Research.)

The characteristics of each device are

CONSOLE The principal interactive console which communicates

with the operator, accessed through CONST, CONIN, and

' CONOUT. Typically, the CONSOLE is a device such as a
CRT or Teletype.

LIST The principal listing device, if it exists on your
system, which is usually a hard-copy device, such as a
printer or Teletype,

PUNCH The principal tape punching device, if it exists, which
is normally a high-speed paper tape punch or Teletype.

READER The principal tape reading device, such as a simple
optical reader or Teletype.

Note that a single peripheral can be assigned as
the LIST, PUNCH, and READER device simultaneously, If
no peripheral device is assigned as the LIST, PUNCH, or
READER device, the CBIOS created by the user may give
an appropriate error message so that the system does
not "hang" if the device is accessed by PIP or some
other wuser orogram, Alternately, the PUNCH and LIST
routines can just simply return, and the READER routine
can return with a 1AH (ctl-Z) in reg A to 1indicate
immediate end-of-file.

For added flexibility, the wuser can optionally
. implement the "IOBYTE" function which allows
reassignment of ohysical and 1logical devices. The
IOBYTE function creates a mapping of 1logical to
physical devices which can be altered during CP/M
processing (see the STAT commanc). The definition of
the IOBYTE function corresponds to the 1Intel standard
as follows: a single location in memory (currently
location W@GP3H) is maintained, called IOBYTE, which
defines the logical to physical device mapping which is
in effect at a particular time. The mapping is
performed by splitting the IOBYTE into four distinct
tields of two bits each, called the CONSOLE, READER,
PUNCH, and LIST fields, as shown below:

most significant least significant

IOBYTE AT @0@03H | LIST | PUNCH | READER | CONSOLE |

——————————————————————————————————————— e

bits 6,7 bits 4,5 bits 2,3 bits 0,1

The value in each field can be in the range @§-3,
defining the assigned source or destination of each
logical device., The values which can be assigned to
each field are given below

‘ \ o O 0 o @ oo - 000 000w
:) § 80
(All Information Contained Herein is Proprietary to Digital Research,)

15

CONSOLE field (bits 0,1)

)

console is assigned to the console printer device (TTY:)
console is assigned to the CRT device (CRT:)

batch mode: use the READER as the CONSOLE input,

and the LIST device as the CONSOLE output (BAT:)

user defined console device (UCl:)

fleld (bits 2,3)

READER 1is the Teletype device (TTY:)

READER is the high-speed reader device (RDR:)
user defined reader # 1 (UR1l:)

user defined reader # 2 (UR2:)

PUNCH field (bits 4,5)

PUNCH is the Teletype device (TTY:)

PUNCH is the high speed punch device (PUN:)
user defined puncnh # 1 (UP1l:)

user defined ounch # 2 (UP2:)

LIST f1e1d (bits 6,7)

L (,'. o

LIST is the Teletype device (TTY:)
LIST is the CRT device (CRT:)

LIST is the line printer device (LPT:)
user defined list device (ULl:)

Note again that the implementation of the IOBYTE is
optional, and affects only the organization of vyour
CBIOS. No CP/M systems use the IOBYTE (although they
tolerate the existence of the IOBYTE at 1location
bvv3d), except for PIP which allows access to the

physical devices, and STAT which allows
logical-pnysical assignments to be made and/or
displayed (for more information, see the "CP/M Features
and Facilities Guide"). In any case, the IOBYTE

implementation should be omitted until your basic CBIOS
is fully implemented and tested; then add the IOBYTE to
increase your facilities,

Disk I/O is always performed through a sequence of
calls on the various disk access subroutines which set
up the disk number to access, the track and sector on a
particular disk, and the direct memory access (DMA)
address involved in the I/0 operation. After all these
parameters have been set up, a call is made to the READ
or WRITE function to perform the actual I/O operation.
Note that there is often a single call to SELDSK to
select a disk drive, followed by a number of read or
write operations to the selected disk before selecting
another drive for subsequent operations., Similarly,
there may be a single call to set the DMA address,
followed by several calls which read or write from the
selectea DMA address pbefore the DMA address is changed.
The track and sector subroutines are.always called
before the READ or WRITE operations are performed.

(All Information Contained Herein is Proprietary to Digital Research.)

16

BOOT

WwBOOT

CONST

CONIN

Note that the READ and WRITE routines should
perform several retries (10 1is standard) before
reporting the error condition to the BDOS. If the
error condition is returned to the BDOS, it will report
the error to the user. The HOME subroutine may or may
not actually perform the track 00 seek, depending upon
your controller characteristics; the important point is
that track 00 has been selected for the next operation,
and is often treated in exactly the same manner as
SETTRK with a parameter of 44.

The exact responsipbilites of eacn entry point
subroutine are given below:

The BOOT entry point gets control from the cold start

loader and 1is responsible for basic system
initialization, 1including sending a signon message
(which can be omitted in the first version). If the

IOBYTE function is implemented, it must be set at this
point, The various system parameters which are set oy
the WBOOT entry point mus<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>