
0 I [)~[j~T f1l RESEf1RCH
- Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

AN INTRODUCTION TO CP/M FEATURES AND FACILITIES

COPYRIGHT (c) 1976, 1977, 1978

DIGITAL RESEARCH

REVISION OF JANUARY 1978

•.

Copyright (c) 1976, 1978 by Digital Research. All rights
reserved. No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any
form or by any means, ·electronic, mechanical, magnetic,
optical, chemical, manual or otherwise, without the prior
written permission of Digital Research, Post Office Box 579,
Pacific Grove, California 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any
particular purpose. Further, Digital Research reserves the
right to revise this publication and to make changes from
time to time in the content hereof without obligation of
Digital Research to notify any person of such revision or
changes.

•

Table of Contents

Section Page

1.

2.

3.

4.

5.

6.

7.

8.

INTRODUCTICN • ••••••••••••••••••••••••••••••••••••••

FUOCTICNAL DESCRIPl'ICN OF CP/M •••••••••••••••••••••
2.1. General Coounand Structure••••••••••••••••••••
2.2. File References ••••••••••••••••••••••••••••••

SWITCHING DISKS • •••••••••••••••••••••••••••••••••••

THE R)R-1 OF BUILT-IN <DMMANI'S•.................
4.1.
4.2.
4.3.
4.4.
4.5.

ERA afn er
DIR afn er

• ••••••••••••••••••••••••••••••••••
• ••••••••••••••••••••••••••••••••••

• ••••••••••••••••••••••••••••
• •••••••••••••••••••••••••••••••

REN ufnl=ufn2 er
SAVE n ufn er
TYPE ufn er • •••••••••••••••••••••••••••••••••

1

3
3
3

6

7
7
8
8
9
9

LINE EDITING AND ourpur a:>NTROL ••••••••••••••••••••• 11

TRANSIENT <DMMANI'S • ••••••••••••••••••••••••••••••••
6.1.
6.2.
6.3.
6.4.
6.5.
6.6.
6.7.
6.8.
6.9.

STAT er ••••••••••••••••••••••••••••••••••••••
• ••••••••••••••••••••••••••••••••••

• •••••••••••••••••••••••••••••••••
ASti ufn er
LO\D ufn er
PIP er •••••••••••••••••••••••••••••••••••••••
ED ufn er
SYSGEN er

• •••••••••••••••••••••••••••••••••••
••••••••••••••••••••••••••••••••••••

SUBMIT ufn parm#l ••• parm#n er • •••••••••••••
• ••••••••••••••••••••••••••••••••• DUMP ufn er

t-OVCPM er ••••••••••••••••••••••••••••••••••••

BOOS ERROR l-ESSAGES ••••••••••••••••••••••••••••••••

OPERATION CF CP/M ON THE Mt6 • ••••••••••••••••••••••

12
13
16
17
18
25
27
28
30
30

33

34

•

1. IN.l'OOOOCI'ICN.

CP/M is a nonitor control :i;rogram for microcomputer system developnent
which uses IBM-canpatible flexible disks for backup storage. Using a canputer
mainframe based up,n Intel's 8080 microcomputer, CP/M provides a general
environment for program construction, storage, and editing, along with
assembly aoo :i;rogram check-out facilities. An imp,rtant feature of CP/M is
that it can be easily altered to execute with any canputer configuration which
uses an Intel 8080 (or Ziloq Z-80) Central Processing Unit, and has at least
16K bytes of main rrernory with up to four IBM-cornpatible diskette drives. A
detailed discussion of the nodifications required for any particular hardware
environment is given in the Digital Research document entitled "CP/M System
Alteration Guide." Although the standard Digital Research version operates on
a single-density Intel MIS 800, several different hardware manufacturers
support their own input-output drivers for CP/M.

The CP/M ronitor provides rapid access to programs through a
cornprehensive file management package. The file subsystem supports a named
file structure, allowing dynamic allocation of file space as well as
sequential · aoo randorn file access. Usirg this file system, a large mmber of
distinct :i;rograms can be stored in both oource and machine executable form.

CP/M also supports a p,werful context editor, Intel-cornpatible assembler,
and debugger slbsystems. Optional software includes a towerful
Intel-canpatible macro assenbler, symbolic debugger, along with various
high-level languages. When coupled with CP/M 's Console Command Processor, the
resulting facilities equal or excel similar large cornputer facilities.

CP/M is logically divided into several distinct parts:

BIOS Basic I/O System (hardware dependent)

BDOS Basic Disk Operating System

CCP Console Command Processor

TPA Transient Program Area

The BIOS provides the pr irni tive operations necessary to access the
diskette drives and to interface standard peripherals (teletype, CRI', -Paper
Tape Reader/Punch, and user-defined peripherals), and can be tailored by the
user for any particular hardware environment by "patching" this tortion of
CP/M. The BDOS :i;rovides disk management by controlling one or nore disk
drives containing iooependent file directories. The BDOS implements disk
allocation strategies which provide fully dynamic file construction while
minimizing head novement across the disk during access. Any particular file
may contain any number of records, not exceeding the size of any single disk.
In a standard CP/M system, each disk can contain up to 64 distinct files. The

1

BDOO has entry p::,ints W'lich include the followirg primitive operations which
can be programmatically accessed:

SF.ARCH

OPEN

CLOSE

RENAME

READ

WRITE

SELEcr

Look for a particular disk file by name.

Open a file for further operations.

Close a file after processing.

Charge the name of a particular file.

Read a record fran a particular file.

Write a record onto the disk.

Select a particular disk drive for further
operations.

The CCP provides symbolic interface between the user's console and the
remainder of the CP/M system. The CCP reads the console device and processes
canmands W'lich include listirg the file directory, pr intirg the contents of
files, arrl controllirg the operation of transient programs, such as
assemblers, editors, and debuggers. The standard canrnands which are available
in the CCP are listed in a followirg section.

The last Se:Jnent of CP/M is the area called the Transient Program Area
(TPA). The TPA oolds programs \tA1ich are loaded fran the disk tnder camnand of
the CCP. Durim program editing, for example, the TPA holds the CP/M text
editor nachine code arrl data areas. Similarly, programs created mder CP/M
can be dlecked out by loadirg and executing these programs in the TPA.

It soould be nentioned that any or all of the CP/M canponent subsystems
can be "overlayed" by an executirg program. That is, once a user's program is
loaded into the TPA, the CCP, BDOO, arrl BIOS areas can be used as the
program's data area. A "bootstrap" loader is programmatically accessible
whenever the BIOS p::,rtion is not overlayed: thus, the user program need only
branch to the bootstrap loader at the end of execution, arrl the canplete CP/M
monitor is reloaded fran disk.

It soould be reiterated that the CP/M operating system is partitioned
into distinct nodules, including the BIOS p::,rtion which defines the hardware
environment in which CP/M is executirg. Thus, the standard system can be
easily nodified to any non-standard environment by dlargirg the :i;;eripheral
drivers to handle the custan system.

2

•

2. FUN:TICNAL DESCRIPI'IOO CF CP/M.

The user interacts with CP/M trimarily through the CCP, \tthich reads and
interprets canmarrls entered through the console. In general, the CCP
addresses one of several disks \\hich are online (the standard system crldresses
up to four different disk drives). These disk drives are labelled A, B, C,
arrl D. A disk is "logged in" if the CCP is currently crldressing the disk. In
order to clearly irrlicate \tthich disk is the currently logged disk, the CCP
always tranpts the cperator wi. th the disk nane followed by the symbol 11>11

indicating that the CCP is ready for another canrnand. Upon initial start up,
the CP/M system is brought in fran disk A, and the CCP displays the nessage

xxK CP/M VER rn.rn

where xx is the rrernory size (in kilobytes) which this CP/M system manages, and
rn.rn is the CP/M version number. All CP/M systems are initially set to operate
in a 16K .nernory space, but can be easily reconfigured to fit any memory size
on the host system (see the M)VCPM transient canrnand) • Following system
signon, CP/M autanatically logs in disk A, tranpts the user wi. th the symbol
11 A>" (indicating that CP/M is currently crldressing disk "A") , and waits for a
canmarrl. The canmarrls are implemented at two levels: built-in canrnarrls arrl
transient canmarrls.

2.1. GENERAL OOMMAND STRJCl'URE.

Built-in canrnarrls are a part of the CCP program itself, while transient
canrnarrls are loaded into the TPA fran disk arrl executed. The built-in
canrnarrls are

ERA

DIR

REN

SAVE

TYm

Erase sr:ecified files.

List file nanes in the directory.

Rename the s:p?cified file.

Save nernory contents in a file.

Ty?? the contents of a file on the logged disk.

Nearly all of the canmands reference a particular file or group of files. The
form of a file reference is specified below.

2.2. FILE REFERENCES.

A file reference identifies a particular file or group of files on a
particular disk attached to CP/M. These file references can be either
"unarnbigoous" (ufn) or "arnbigoous" (afn). An tmarnbiguous file reference
uniquely identifies a single file, \\bile an ambiguous file reference may be

3

satisfied by a number of different files.

File references consist of two parts: the i:runary name and the secondary
name. Although the secondary name is q,tional, it usually is generic: that
is, the secondary nane "ASM," for example, is used to denote that the file is
an assembly language oource file, 'lthile the Jr unary name distinguishes each
particular oource file. The two names are separated by a "." as shown below:

pr:pppppp.sss

where pppppppp represents the ~unary name of eight characters or less, and
sss is the secondary nane of no rrore than three dlaracters. As nentioned
above, the name

pppppppp

is also allowed and is a::JUivalent to a secondary name consisting of three
blanks. The characters used in SP=cifying an tmambiguous file reference
cannot contain any of the si;:ecial characters

<>.,::= ?*[]

while all alphanunerics and ranaining SP=cial dlaracters are allowed.

An anbigoous file reference is used for directory search and pattern
matching. The form of an ambiguous file reference is siJnilar to an
unambigoous reference, except the symbol 11 ?" may be inters:persed throughout
the :Er unary and secondary names. In various canmands throughout CP/M, the "?"
symbol matches any character of a file name in the "?" p:>sition. Thus, the
ambigoous reference

X?Z.C?M

is satisfied by the 1.nambigoous file names

XYZ.CDM
and

X3Z.CAM

Note that the anbigoous reference

* * .
is a::JUivalent to the anbigoous file reference

???????? ???
while

4

•

•

pi;H)pppp.*
and

*.sss

are abbreviations for

Pi:H>PPPP• ???
and

???????? .sss

respectively. As an example,

DIR *•*

is interpreted by the CCP as a camnand to list the names of all disk files in
the directory, \lbile

DIR X.Y

searches only for a file by the name X.Y Similarly, the canmarrl

DIR. X?Y.C?M

causes a search for all (unambiguous) file nanes on the disk \lbich satisfy
this anbiguous reference.

The followinJ file nanes are valid mambiguous file references:

X

X.Y

XYZ

XYZ.CDM

GAMMA

GM-1MA.l

As an crlded coovenience, the i:rogrammer can generally specify the disk
drive nane alo03 with the file nane. In this case, the drive name is given as
a letter A through z follo\tted by a colon (:) • The specified drive is then
"logged in" before the file q,eration occurs. Thus, the followin;J are valid
file nanes with disk nane prefixes:

A:X.Y B:XYZ C:GAMMA

Z :XYZ .CDM B:X.A?M C:*.ASM

It sh:mld also be noted that all alphabetic lower case letters in file
and drive nanes are always translated to uwer case \lben they are irocessed by
the CCP •

5

3. SWITCHING DISKS.

The q>erator can switch the currently logged disk by typing the disk
drive ncl'lle (A, B, C, or D) followed by a colon (:) when the CCP is waiting for
console irput. Thus, the sequence of Pt'anpts and canmands sh::>wn below might
occur after the CP/M system is loaded fran disk A:

161< CP/M VER 1.4

A>DIR List all files on disk A.

SAMPLE ASM

SAMPLE PRN

A>B: switch to disk B.

B>DIR *.ASM

DUMP ASM

FILES ASM

B>A:

6

List all "ASM" files on B.

switch back to A. •

•

4. THE EORM CF BUILT-IN CDMMANOO.

The file arrl device reference forms described above can now be used to
fully SEecify . the structure of the built-in canmaoos. In the description
below, assume the following abbreviations:

ufn

afn

er

mambigoous file reference

ambigoous file reference

carriage return

Further, recall that the CCP always translates lower case dlaracters to UR;>er
case dlaracters internally. Thus, lower case alphabetics are treated as if
they are u~r case in canmaoo nanes arrl file references.

4.1 ERA afn er

The ERA (erase) canmaoo ranoves files fran the currently logged-in disk
(i.e., the disk nane currently pranpted by CP/M preceding the ">"). The files
which are erased are tlx>se \tbich satisfy the anbiguous file reference afn.
The following examples illustrate the use of ERA:

ERA X.Y

ERA X.*

ERA *.AS-1

ERA X?Y.C?M

ERA*•*

ERA B:*.PRN

The file naned X.Y on the currently logged disk
is ranoved fran the disk directory, am the space
is returned.

All files with i;rimary nane X are removed fran
the rurrent disk.

All files with secondary name ASM are removed
fran the current disk.

All files on the current disk \ttlich satisfy the
ambigoous reference X?Y.C?M are deleted.

Erase all files on the current disk (in this case
the CCP pranpts the console with the message

"ALL FIIES (Y/N) ?"
\ttlich r8luires a Y response before files are
actually removed).

All files on drive B \ttlich satisfy the ambiguous
reference ????????.PRN are deleted, independently
of the rurrently logged disk •

7

4.2. DIR afn er

The DIR (directory) canmarrl causes the ncllles of all files \lbich satisfy -
the anbigmus file ncllle afn to be listed at the console device. As a special
case, the canmarrl

DIR

lists the files on the rurrently logged disk (the canmarrl "DIR" is equivalent
to the canmarrl "DIR *. *") • Val id DIR canmarrls are s.oown below.

DIR X.Y

DIR X?Z.C?M

DIR ??.Y

Similar to other CCP canmarrls, the afn can be ~eceded by a drive name.
The followirg DIR canrnarrls cause the selected drive to be crldressed before the
directory search takes place.

DIR B:

DIR B:X.Y

DIR B:*.A?M

If no files can be found on the selected diskette \lhich satisfy the A
directory request, then the :rressage "NO!' FOUND" is typed at the console. •

4.3. REN ufnl=ufn2 er

The REN (rename) canrnarrl allows the user to change the names of files on
disk. The file satisfyirg ufn2 is charged to ufnl. The currently logged disk
is assumed to contain the file to rename (ufnl). The CCP also allows the user
to type a left-directed arrow instead of the equal sign, if the user's console
supports this graphic character. Examples of the REN canmarrl are

REN X.Y=Q.R The file Q.R is changed to x. Y.

REN XYZ.Q)M=XYZ.XXX The file XYZ.XXX is changed to XYZ.cnt.

The operator can ~ecede either ufnl or ufn2 (or both) . by an optional
drive crldress. Given that ufnl is preceded by a drive name, then ufn2 is
assumed to exist on the sc1ne drive as ufnl. Similarly, if ufn2 is preceded by
a drive ncllle, then ufnl is assumed to reside on that drive as 1t.ell. If both
ufnl arrl ufn2 are preceded by drive ncllles, then the Scllle drive must be

8

•

specified in both cases. The followirg REN canmands illustrate this format.

REN A:X.ASM = Y.ASM

REN B:ZAP.BAS=ZOT.BAS

REN B:A.ASM = B:A.BAK

The file Y .ASM is dlarged to x.ASM on
drive A.

The file ZOT.B.Z\S is charged to ZAP.BAS
on drive B.

The file A.BAK is renamed to A.ASM on
drive B.

If the file ufnl is already }Xesent, the REN canmand will respond with
the error "FILE EXISTS" and not perform the dlarge. If ufn2 does not exist on
the s~cified diskette, then the nessage "NO!' FOUND" is printed at the
console.

4.4. SAVE n ufn er

The SAVE canrnand places n pages (256-byte blocks) onto disk fran the TPA
and ncmes this file ufn. In the cP/M distribution system, the TPA starts at
100H (hexadecimal), \ohich is the second page of memory. Thus, if the user's
program occupies the area fran 100H through 2FFH, the SAVE canmand must
specify 2 pages of nanory. The machine code file can be slt>sequently loaded
and executed. Examples are:

SAVE 3 X.(l)M

SAVE 40 Q

SAVE 4 X.Y

Copies 100H through 3FFH to X.CDM.

Copies 100H through 28FFH to Q (note
that 28 is the page count in 28FFH,
and that 28H = 2*16+8 = 40 decimal).

Copies 100H through 4FFH to X.Y.

The SAVE canmand can also s~cify a disk drive in the afn p:>rtion of the
canrnand, as sh:>wn below.

SAVE 10 B:ZOT.CDM

4.5. 'IYm ufn er

Copies 10 pages (100H through 0AFFH) to
the file ZOT.CDM on drive B.

The TYE£ canmand displays the contents of the ASCII source file ufn on
the rurrently logged disk at the console device. Valid TYPE canmands are

TYm X.Y

9

TYEE X.PIM

TYEE XXX

The TYEE canmarrl expands tabs (clt-I characters), assurranirg tab tnsitions
are set at e,ery eighth colt.nm. The ufn can also reference a drive name as
shown below.

TYEE B:X.PRN The file x.PRN fran drive B is displayed.

10

•

5. LINE EDITING IiND Olil'Plil' CONTROL.

The CCP allows certain line editirg functions W1ile typirg canmarrl lines.

rubout

ctl-U

ctl-X

ctl-R

ctl-E

ctl-C

ctl-Z

Delete arrl echo the last character typed at the
console.

Delete the entire line typed at the console.

(Same as ctl-U}

Retyre current canmarrl line: types a "clean line" fol
lowirg character deletion with rubouts.

Physical errl of line: carriage is returned, but line
is not sent mtil the carriage return key is depressed.

CP/M system reboot (warm start}

End input fran the console (used in PIP and ED}.

The control ftnctions ctl-P arrl ctl-S affect console output as sl'x>wn below.

ctl-P

ctl-S

Copy all sli:>sequent console output to the currently
assigned list device (see the STAT canmarrl}. output
is sent to both the list device arrl the console device
until the next ctl-P is typ:?d.

Stop the console output temJ;X)rarily. Program execution
arrl ootput continue W1en the next character is typed
at the console (e.g., another ctl-S}. This feature is
used to stop output on high speed consoles, such as
CRI''s, in order to view a segment of output before con
tinuirg.

Note that the ctl-key sequences smwn above are obtained by depressirg the
control arrl letter keys simultaneously. Further, CCP canmarrl lines can
generally be up to 255 characters in lergth: they are not acted uJ;X)n tntil the
carriage return key is typed •

11

6. TRANSIENT CDMMANil3.

Transient canmands are loaded fran the currently logged disk and executed
in the TPA. The transient camnands defined for execution under the CCP are
shown below. Additional fmctions can easily be defined by the user (see the
LCM) canmand definition).

STAT

Dill'

PIP

ED

SYSGEN

SUBMIT

DUMP

M:::>VCPM

List the nurrber of bytes of storage remaining on the
currently logged disk, provide statistical information
about particular files, and display or alter device
assignment.

Load the CP/M assembler and assemble the specified
program fran disk.

Load the file in Intel "hex" machine code format and
produce a file in machine executable form which can be
loaded into the TPA (this loaded program beccrnes a
new canmand mder the CCP).

Load the CP/M debugger into TPA and start execution.

Load the Peripheral Interchange Program for subsequent
disk file and peripheral transfer operations.

Load and execute the CP/M text editor program.

Create a new CP/M system diskette.

Submit a file of canmands for batch processing.

Dump the contents of a file in hex.

Regenerate the CP/M system for a particular memory
size.

Transient canmands are specified in the same manner as built-in canmands, and
additional canmands can be easily defined by the user. As an crlded
convenience, the transient canrnand can be preceded by a drive name, which
causes the transient to be loaded fran the specified drive into the TPA for
execution. Thus, the canmand

B:STAT

causes CP/M to temJ;X)rarily "log in" drive B for the oource of the STAT
transient, and then return to the original logged disk for subsequent
processing.

12

•

•

The basic transient camnands are listed in detail below.

6.1. STAT er

The STAT camnand provides general statistical information about file
storage and device assignment. It is initiated by typing one of the following
forms:

STAT er
STAT "camnand line" er

Special forms of the "camnand line" allow the current device assignment to be
examined and altered as well. The various camnand lines which can be
specified are soown below, with an explanation of each form soown to the
right.

STAT er

STAT x: er

STAT afn er

If the user types an enpty camnand line, the STAT
transient calculates the storage ranaining on all
active drives, and prints a nessage

x: R/W, SPACE: nnnK
or

x: R/0, SPACE: nnnK

for each active drive x, where R/W indicates the
drive may be read or written, and R/0 indicates
the drive is read only (a drive becanes R/0 by
explicitly setting it to read only, as shown
below, or by inadvertantly dlanging diskettes
without performing a warm start) • The space
ranaining on the diskette in drive xis given
in kilobytes by nnn.

If a drive name is given, then the drive is
selected before the storage is canputed. '!bus,
the camnand "STAT B:" could be issued while
logged into drive A, resulting in the nessage

BYI'ES REMAINING 00 B: nnnK

The camnand line can also specify a set of files
to be scanned by STAT. The files which satisfy
afn are listed in alphabetical order, with stor
cge requirements for each file t.11der the heading

RECS BYI'S EX D:FILENAME.TYP
rrrr bbbK ee d:pppppppp.sss

where rrrr is the nl.lIIDer of 128-byte records

13

STAT x:afn er

STAT x:=R/O er

allocated to the file, bbb is the nurrt>er of kilo
bytes allocated to the file (bbb=rrrr*l28/1024),
ee is the nurrt>er of 16K extensions (ee=bbb/16),
dis the drive name containing the file (A ••• Z),
pppppppp is the (up to) eight-character primary
file name, am sss is the (up to) three-character
secondary name. After listing the individual
files, the storage usage is sunmarized.

As a convenience, the drive name can be given
ahead of the afn. In this case, the specified
drive is first selected, am the form "STAT afn"
is executed.

This form sets the drive given by x to read-only,
which ranains in effect until the next warm or
cold start takes place. When a disk is read-only,
the rcessage

BOCS ERR ON x: RF.AD ONLY

will appear if there is an attempt to write to
the read-only disk x. CP/M waits mtil a key
is depressed before performing an automatic warm
start (at \t.hich time the disk becomes R/W).

The STAT canmarrl also allows control Oller the physical to logical device
assignment (see the IOBYTE function described in the manuals "CP/M Interface
Guide" am "CP/M System Alteration Guide"). In general, there are four
logical peripheral devices \t.hich are, at any particular instant, each assigned
to one of sereral physical peripheral devices. The four logical devices are
named:

<X>N:

RDR:

PUN:

LST:

The system console device (used by CCP
for canmunication with the operator)

The paper tape reader device

The paper tape punch device

The output list device

The actual devices attached to any particular canputer system are driven
by sl.broutines in the BIOS p:>rtion of CP/M. Thus, the logical RDR: device,
for example, coold actually be a high speed reader, Teletype reader, or
cassette tape. In order to allow oome flexibility in device naming am
assignment, sereral physical devices are defined, as shown below:

14

•

TTY:

.CRl':

BAT:

UCl:

Pl'R:

URl:

UR2:

Pl'P:

UPl:

UP2:

LP!':

ULl:

Teletype device (slow speed console)

cathode ray tube device (high speed console)

Batch processing (console is current RDR:,
output goes to current LST: device)

User-defined console

Paper tape reader (high speed reader)

User-defined reader #1

User-defined reader #2

Paper tape punch (high speed punch)

user-defined ptmch #1

user-defined ptmch #2

Line pr inter

user-defined list device #1

It must be emphasized that the physical device names may or may not
actually corres{X)nd to devices which the names imply. That is, the Pl'P:
device may be implemented as a cassette write ~ration, if the user wishes.
The exact corres{X)ndence and driving subroutine is defined in the BIOS {X)rtion
of CP/M. In the standard distribution version of CP/M, these devices
corres!X)nd to their names on the MOO 800 developnent system.

The !X)ssible logical to physical device assignments can be displayed by
typing

STAT VAL: er

The STAT prints the {X)ssible values which can be taken on for each logical
device:

CDN. = TTY: CRl': BAT: UCl:
RDR: = TTY: Pl'R: URl: UR2:
PUN: = TTY: Pl'P: UPl: UP2:
LST: = TTY: CRl': LPI': ULl:

In each case, the logical device shown to the left can take any of the four
physical assignments shown to the right on each line. The current logical to
physical mapping is di splayed by typing the camnaoo

STAT IEV: er

15

which p:-oduces a listing of each logical device to the left, and the current -
corresponding physical device to the right. For example, the list might
appear as follows:

(X)N: = CR!':
RDR: = URl:
PUN: = Pl'P:
LST: = TTY:

The cur rent logical to physical device assignment can be changed by typing a
STAT canmand of the form

STAT ldl = pdl, ld2 = frl2, ••• , ldn = pdn er

where ldl through ldn are logical device names, and pdl through {:rln are
canpatible physical device mrnes (i.e., ldi and pdi appear on the same line in
the "VAL:" canmand shown above). The followi~ are valid STA'!' canmands which
change the current logical to physical device assignments:

STAT CDN:=CRI': er
STAT PUN: = TTY: ,LST:=LPI':, RDR:=TTY: er

6.2. ASM ufn er

The ASM canmand loads and executes the CP/M 8080 assembler. '!he ufn
specifies a oource file containing assembly language statements where the
secondary mrne is assumed to be ASM, and thus is not specified. The following
ASM canmands are valid:

ASM G.Z\MMA

The two-pass assembler is autanatically executed. If assembly errors occur
durirg the second pass, the errors are printed at the console.

The assembler produces a file

x.PRN

where x is the IX imary name specified· in the ASM command. The PRN file
contains a listirg of the oource ,xogram (with imbedded tab dlaracters if
present in the oource p:-ogram), along with the madline code generated for each
statement and diagnostic error messaqes, if any. The PRN file can be listed

16

•

at the console usir¥;J the TYPE canmand, or sent to a peripheral device using
PIP (see the PIP canmand structure below). Note also that the PRN file
contains the original rource program, augmented by miscellaneous assembly
infonnation in the leftm:>st 16 colunns (program crldresses and hexadecimal
machine code, for example). Thus, the PRN file can serve as a backup for the
original rource file: if the e:>urce file is accidently removed or destroyed,
the PRN file can be edited (see the ED operator's guide) by removing the
leftm:>st 16 characters of each line (this can be done by issuing a single
editor "nacro" canmaoo) • The resulting file is identical to the original
source file and can be renamed (REN) fran PRN to ASM for subsequent editing
and assembly. The file

x.HEX

is also produced \tthich contains 8080 machine language in Intel "hex" format
suitable for stbsequent loooing and execution (see the LOM> ccmrnand). For
canplete details of CP/M's assembly language program, see the "CP/M Assembler
language (A9tt) User's Guide."

Similar to other transient camnands, the rource file for assembly can be
taken fran an a...ternate disk by prefixing the assembly language file name by a
disk drive name. Thus, the canrnand

ASM B:ALPHA er

le>crls the assembler fran the currently logged drive and operates up,n the
source program 1\LPHA.ASM on drive B. The HEX and PRN files are also placed on
drive Bin this case.

6.3. LO\D ufn er

The LOM> canrnand reads the file ufn, 'l.hich is assumed to contain "hex"
format machine code, and produces a memory image file which can be
subsequently executed. The file name ufn is assumed to be of the form

x.HEX

aoo thus only the nane x need be specified in the canrnand. The LOM> canrnand
creates a file naned

which narks it as containing machine executable code. The file is actually
loaded into memory and executed \!then the user types the file name x
immediately after the pranpting character">" printed by the CCP.

In general, the CCP reads the nclT\e x following the pranpting character
and looks for a built-in function name. If no function name is found, the CCP
searches the system disk directory for a file by the name

17

x.CDM

If found, the machine code is loaded into the TPA, and the program executes.
Thus, the user need only LOM> a hex file once: it can be subsequently
executed aey m.urber of times by simply typing the primary name. In this way,
the user can "invent" new canmands in the CCP. (Initialized disks contain the
transient canmands as CDM files, which can be deleted at the user's option.)
The q>eration can take place on an alternate drive if the file name is
prefixed by a drive nane. Thus,

I..ON) B:BETA

brings the LOM> program into the TPA fran the currently logged disk and
operates UJ;X>n drive B after execution begins.

It must be noted that the BETA.HEX file must contain valid Intel format
hexadecimal machine code records (as produced by the ASM program, for example)
which be:;Jin at 100H, the beginning of the TPA. Further, the crldresses in the
hex records must be in ascending order: qaps in mf illed memory regions are
filled with zeroes by the IllAD canmand as the hex records are read. Thus,
IllAD must be used only for creating CP/M standard "CDM" files which operate in
the TPA. Programs which occupy regions of memory other than the TPA can be
locrled mder our.

6.4. PIP er

PIP is the CP/M Peripheral Interchange Program which implements the basic
media conversion operations necessary to load, print, punch, copy, and canbine
disk files. The PIP program is initiated by typing one of the following forms

(1) PIP er
(2) PIP "canmand line" er

In both cases, PIP is loaded into the TPA and executed. In case (1), PIP
reads canmand lines directly fran the console, pranpted with the "*"
character, mtil an enpty canmand line is typed (i.e., a single carriage
return is issued by the operator) • Each successive canmand line causes s:>me
media conversion to take place according to the rules shown below. Form (2)
of the PIP canmand is equivalent to the first, except that the single camnand
line given with the PIP canmand is autanatically executed, and PIP terminates
immediately with no further pranpting of the console for input camnand iines.
The form of each canmand line is

destination= s:>urce#l, s:>urce#2, ••• , s:>urce#n er

where "destination" is the file or peripheral device to receive the data, and

18

•

"s:,urceU, ••• , s:>urce#n" represents a series of one or rrore files or devices
which are copied fran left to right to the destination.

When multiple files are given in the camnand line (i.e, n > 1), the
individual files are assl.mled to contain ASCII characters, with an assumed CP/M
end-of-file dlaracter (ctl-Z) at the end of each file (see the O parameter to
override this assumption) • The equal symbol (=) can be replaced by a
left-oriented arrow, if your console stlpEX>rts this ASCII character, to improve
rea:lability. wwer case ASCII alphabetics are internally translated to ~r
case to be consistent with CP/M file and device name conventions. Finally,
the total canmand line length cannot exceed 255 characters (ctl-E can be used
to force a physical carriage return for lines which exceed the console width).

The destination and s:>urce elements can be tnambiqoous references to CP/M
source files, with or without a p:ecedin:J disk drive name. That is, any file
can be referenced with a p:ecedin:J drive name (A:, B:, C:, or D:) which
defines the particular drive where the file may be obtained or stored. When
the drive ncl'l\e is not included, the currently logged disk is assumed.
Further, the destination file can also appear as one or rrore of the s:,,urce
files, in which case the s:>urce file is not altered tntil the entire
concatenation is canplete. If the destination file already exists, it is
ranoved if the canmand line is properly formed (it is not ranoved if an error
condition arises) • The followin:J canmand lines (with explanations to the
right) are valid as input to PIP:

X =Yer

X = Y,Z er

X.ASM=Y.ASM,Z.ASM,FIN.ASM er

NEW.ZOT = B:OLD.ZAP er

B:A.U = B:B.V,A:C.w,o.x er

Copy to file X fran file Y,
where X and Y are unarrbigoous
file names: Y remains tnchanged.

Concatenate files Y and Zand
copy to file X, with Y and z
unchanged.

Create the file X.ASM fran the
concatenation of the Y, Z, and
FIN files with type ASM.

Move a copy of OLD.ZAP fran drive
B to the currently logged disk:
name the file NE.W.ZCYI'.

Concatenate file B.V fran drive B
with c.w fran drive A and o.x.
fran the logged disk: create
the file A.U on drive B.

For rrore convenient use, PIP allows abbreviated canmands for transferring
flles between disk drives. The abbreviated forms are

19

PIP X: =afn er

PIP x:=y:afn er

PIP ufn = y: er

PIP x:ufn = y: er

The first form cq>ies all files fran the currently logged disk which satisfy
the afn to the sane file nanes on drive x {x = A ••• Z). The second form is
equivalent to the first, where the source for the copy is drive y (y = A •••
Z). The third form is equivalent to the canmand "PIP ufn=y:ufn er" which
copies the file given by ufn fran drive y to the file ufn on drive x. The
fourth form is equivalent to the third, where the source disk is explicitly
given by y.

Note that the source arrl destination disks must be different in all of
these cases. If an afn is specified, PIP lists each ufn which satisfies the
afn as it is beirg cq>ied. If a file exists by the same name as the
destination file, it is removed up:m successful canpletion of the copy, and
replaced by the cq>ied file.

The followi~ PIP canrnarrls give examples of valid disk-to-disk copy
operations:

B:=*.<DM er

A:=B:ZAP.* er

ZAP.ASM=B: er

B:ZO'r.<DM=A: er

B:=GAMMA.BAS er

B:=A:GM-1MA.BAS er

Copy all files which have the
secondary name "a>M" to drive B
fran the current drive.

Copy all files which have the
primary name "ZAP" to drive A
fran drive B.

Equivalent to ZAP.ASM=B:ZAP.ASM

Equivalent to B:ZOl'.CDM=A:zar.CX>M

Sarne as B :GAMMA. BAS=GAMMA. BAS

Same as B:GP.MMA.BAS=A:GM-1MA.BAS

PIP also allows reference to physical arrl l(XJical devices which are
attached to the CP/M system. The device names are the same as given under the
STAT canrnarrl, alorg with a nurrber of specially named devices. The l(XJical
devices given in the STAT canrnand are

OON: {console) , IDR: (reader) , PUN: {punch) , and IST: (list)

while the physical devices are

20

T'IY: (console, reader, punch, or list)
CRI': (console, or list), UCl: (console)
Pl'R: (reader), URl: (reader), UR2: (reader)
Pl'P: (punch), UPl: (punch), UP2: (punch)
LPI': (list) , ULl: (list)

(Note that the "BAT:" physical device is not included, since this assignment
is used only to indicate that the RDR: and I.ST: devices are to be used for
console irput/output.)

The IDR, I.ST, roN, am OON devices are all defined within the BIOO
portion of CP/M, and thus are easily altered for any particular I/O system.
(The current physical device mapping is defined by IOBYTE: see the 11CP/M
Interface Guide" for a discussion of this function). The destination device
must be capable of receivin:J data (i.e., data cannot be sent to the punch) ,
and the source devices must be capable of generating data (i.e., the L.ST:
device cannot be read) •

The additional device nanes 't.hich can be used in PIP canmands are

NUL:

EOF:

INP:

our:

PRN:

Send 40 "nulls" (ASCII 0's) to the device
(this can be issued at the end of punched output).

Send a CP/M end-of-file (ASCII ctl-Z) to the
destination device (sent autanatically at the
end of all ASCII data transfers through PIP).

Special PIP input source 't.hich can be "patched"
into the PIP program itself: PIP gets the input
data character-by-character by CAI.Lim location
103H, with data returned in location 109H {parity
bit must be zero).

Special PIP output destination 't.hich can be
patched into the PIP program: PIP CAI.Ls location
106H with data in register C for each character
to transmit. Note that locations 109H through
lFFH of the PIP memory image are not used and
can be replaced by special purpose drivers using
oor (see the DDr operator's manual).

Same as L.ST:, except that tabs are expanded at
every eighth character µ>sition, lines are
nunbe~ed, and page ejects are inserted f!'very 60
lines, with an initial eject (same as [t8np]).

File and device nanes can be interspersed in the PIP canmands. In each
case, the specific device is read tntil end-of-file (ctl-Z for ASCII files,
am a real em of file for non-ASCII disk files) • Data fran each device or
file is concatenated fran left to right L11til the last data source has been

21

read. The destination device or file is written using the data fran the
source files, arrl an end-of...;file- dla-racter (ctl-Z) is appended to the result
for ASCII files. Note if the destination is a disk file, then a temporary
file is created ($$$ secondary name") which is dlamed to the actual file name
only upon su:::cessful canpletion of the copy. Files with the extension "CDM"
are always asst.nned to be non-ASCII.

The cq;>y q;>eration can be aborted at any time by depressing any key on
the keyboard (a rubout suffices) • PIP will respond with the message "AOORI'ED"
to irrlicate that the q>eration was not canpleted. Note that if any operation
is aborted, or if an error occurs during :i;x-ocessing, PIP removes any pending
canmands which were set up while using the SUBMIT canmand.

It smuld also be noted that PIP perfonns a special ft.mction if the
destination is a disk file with t~ "HEX" (an Intel hex formatted machine
code file), and the rource is an external peripheral device, such as a i:;aper
tape recrler. In this case, the PIP program dlecks to ensure that the rource
file contains a ~operly funned hex file, with legal hexadecimal values and
checksum records. When an invalid input record is found, PIP reports an error
message at the console and waits for corrective action. It is usually
sufficient to open the reader and rerun a section of the tape (pull the tape
back about 20 inches) • When the tape is ready for the re-read, type a single
carriage return at the console, and PIP will attempt another read. If the
tape p:,si tion cannot be ~operly read, simply continue the read (by typing a
return following the error message) , and enter the record manually with the ED
program after the disk file is constructed. For convenience, PIP allows the
end-of-file to be entered fran the console if the rource file is a RDR:
device. In this case, the PIP program reads the device and rronitors the
keyboard. If ctl-Z is typed at the keyboard, then the read operation is
tenninated nonnally.

Valid PIP canmands are sh:>wn below.

PIP IST: = X.PRN er

PIP er

*CDN:=X.ASM,Y.ASM,Z.ASM er

*X.HEX=OON:,Y.HEX,Pl'R: er

*er

22

Copy X.PRN to the IST device and
terminate the PIP program.

Start PIP for a sequence of
camnands (PIP pranpts with"*").

Concatenate three ASM files and
copy to the CON device.

Create a HEX file by reading the
CDN (until a ctl-Z is typed) , fol
lowed by data fran Y.HEX, followed
by data fran Pl'R t.mtil a ctl-Z is
encountered.

Single carriage return stops PIP.

•

•

PIP PUN:=NUL: ,x.ASM,EOF: ,NUL: er Send 40 nulls to the punch device:
then copy the x.~M file to the
punch, followed by an end-of-file
(ctl-Z) and 40 more null charac
ters.

The user can also specify one or nore PIP parameters, enclosed in left
and right square brackets, separated by zero pr nore blanks. Each parameter
affects the cq,y operation, and the enclosed list of parameters must
immediately follow the affected file or device. Generally, each parameter can
be followed by an q,tional decimal integer value (the S and Q parameters are
exceptions). The valid PIP parameters are listed below.

B Block mode transfer: data is buffered by PIP until an ASCII
x-off character (ctl-S) is received fran the source device.
This allows transfer of data to a disk file fran a continuous
recrling device, such as a cassette reader. Upon receipt of
the x-off, PIP clears the disk buffers and returns for nore
input data. The amount of data which can be buffered is de
pendent upon the memory size of the host system (PIP will
issue an error message if the buffers overflow).

Dn Delete characters which extend past column n in the transfer
of data to the destination fran the character source. This
parameter is used "·m:>st often to truncate long lines which are
sent to a (narrow) ··printer or console device.

E Echo all transfer·aperations to the console as they are being
performed.

F Filter form feeds fran the file. All imbedded form feeds are
removed. The P parameter can be used simultaneously to
insert new form feeds.

H Hex data. transfer: all data is checked for proper Intel hex
file format. Non-essential characters between hex records
are removed during the copy operation. The console will be
pranpted for corrective action in case errors occur.

I Ignore ":00" records in the transfer of Intel hex format
file (the I parameter autanatically sets the H parameter).

L Translate upper case alphabetics to lower case.

N Add line numbers to each line transferred to the destination
starting at one, and incrementing by 1. Leading zeroes are
suppressed, and the number is followed by a colon. If N2
is specified, then leadi~ zeroes are included, and a tab is
inserted following the number. The tab is expanded if T is

23

set.

O Cl>ject file (non-ASCII) transfer: the normal CP/M end of
file is ignored.

Pn Include page ejects at every n lines (with an initial page
eject). If n = 1 or is excluded altogether, page ejects
occur every 60 lines. If the F parameter is used, form feed
suppression takes place before the new page ejects are
inserted.

Qsfz ()lit copying fran the oource device or file when the
strings (terminated by ctl-Z) is encountered.

ss1z Start copying fran the oource device when the strings is
encountered (terminated by ctl-Z). The Sand Q parameters
can be used to "abstract" a particular section of a file
(such as a subroutine). The start and quit strings are al
ways included in the copy operation.

NOl'E - the strings following the sand q parameters are
translated to uwer case by the CcP if form (2) of the
PIP camnand is used. Form (1) of the PIP invocation, oow
ever, does not perform the automatic uwer case translation.

(1) PIP er
(2) PIP "camnand line" er

Tn Expand tabs (ctl-I characters) to every nth colurm during the
transfer of characters to the destination fran the oource.

U Translate lower case alphabetics to uwer case during the
the copy operation.

V Verify that data has been copied correctly by rereading
after the write operation (the destination must be a disk
file).

z Zero the parity bit -on input for each ASCII character.

The followiaj are valid PIP eanma~s which specify parameters in the file
transfer:

PIP X.ASM=B:[v] er

PIP LP1':=X.ASM[nt8u] er

Copy X.ASM fran drive B to the current drive
and verify that the data was p:operly copied.

Copy X.ASM to the LP!': device: mmber each
line, expand tabs to every eighth colurm, and
translate lower case alphabetics to uwer
case.

24

•

PIP Pl.N:=X.HEX[i] ,Y.ZOT[h] er First copy X.HEX to the PUN: device and
ignore the trailing ":00" record in X.HEX;
then continue the transfer of data by reading
Y.ZOT, which contains hex records, including
any ":00" records which it contains.

PIP x.Lm = Y.ASM [sSUBRl:tz gJMP L3tz] er Copy fran the file Y.ASM
into the file X.LIB. Start the copy when the
string "SUBRl:" has been found, and quit copy
ing after the string "JMP L3" is encountered.

PIP PRN:=X.ASM[p50] Send X.ASM to the I.ST: device, with line num
bers, tabs expanded to every eighth colt.mm,
and page ejects at every 50th line. Note that
nt8p60 is the assumed parameter list for a PRN
file; p50 OV'errides the default value.

6.5. ED ufn er

The ED program is the CP/M system context editor, \\hich allows creation
and alteration of ASCII files in the CP/M environment. Complete details of
operation are given the ED user's manual, "ED: a Context Editor for the CP/M
Disk System." In general, ED allows the operator to create and operate upm
source files \\hich are organized as a sequence of ASCII characters, separated
by end-of-line characters (a carriage-return line-feed sequence}. There is no
practical restriction on line length (no single line can exceed the size of
the working memory) , \\hich is instead defined by the m.1rct>er of characters
typed between cr's. The ED program has a number of canmands for character
string searching, replacement, and insertion, which are useful in the creation
and correction of programs or text files tnder CP/M. Although the CP/M has a
limited memory work space area (approximately 5000 characters in a 16K CP/M
system), the file size \\hich can be edited is not limited, since data is
easily "paged" through this work area.

Upon initiation, ED creates the si:ecified oource file, if it does not
exist, and opens the file for access. The programmer then "appends" data fran
the oource file into the work area, if the oource file already exists (see the
A canmand}, for editinq. The appended data can then be displayed, altered,
and written fran the work area back to the disk (see the w camnand}.
Particular ~ints in the program can be autcmatically paged and located by
context (see the N canmand), allowing, easy access to particular µ,rtions of a
large file.

Given that the operator has typed

ED X.ASM er

25

the ED prQCJram creates an intermediate work file with the name

X.$$$

to oold the edited data durin;J the ED run. Upon canpletion of ED, the X.ASM
file (original file) is renamed to x.BAK, and the edited work file is renamed
to x.ASM. Thus, the X.BAK file contains the original (unedited) file, and the
x.ASM file contains the newly edited file. The operator can always return to
the pl'evious version of a file by ranoving the rrost recent version, and
renamin;J the J;X"evious version. Suppose, for example, that the current X.ASM
file was imp:-operly edited: the sequence of CCP canrnand shown below would
reclaim the backup file.

DIR X.*

ERA X.ASM

REN X.ASM=X.BAK

Check to see that BAK file
is available.

Erase rrost recent version.

Rename the BAK file to ASM.

Note that the q:,erator can abort the edit at any !X)int (reboot, !X)wer failure,
ctl-C, or Q canmarrl) wi toout destroying the original file. In this case, the
BAK file is not created, and the original file is always intact.

The ED prQCJram also allows the user to "ping-!X)ng" the rource arrl create
backup files between two disks. The form of the ED canrnarrl in this case is

ED ufn d:

where ufn is the nane of a file to edit on the currently lQCJged disk, and d is
the nane of an alternate drive. The ED prQCJram reads and J;X"ocesses the rource
file, arrl writes the new file to drive d, using the name ufn. Upon canpletion
of J;X"Ocessing, the original file becanes the backup file. Thus, if the
operator is crldressing disk A, the following canrnand is valid:

ED X.ASM B:

\\bich edits the file x.ASM on drive A, creatin:} the new file X.$$$ on drive
B. Upon canpletion of a successful edit, A:X.ASM is renamed to A:X.BAK, and
B:X.$$$ is renamed to B:X.ASM. For user convenience, the currently lQCJged
disk becanes drive B at the errl of the edit. Note that if a file by the name
B:X.ASM exists before the editing begins, the message

FILE EXISTS

is IX" inted at the console as a trecaution against accidently destroying a
source file. In this case, the operator must first ERAse the existing file ~
and then restart the edit operation. W

26

•

•

Similar to other transient canmarrls, editing can take place on a drive
different fran the rurrently lo;Jged disk by preceding the oource file name by
a drive nane. Examples of valid edit r9:luests are smwn below

ED A:X.ASM

ED B:X.ASM A:

6. 6. SYSGEN er

F.di t the file X.ASM on drive A, with
new file and backup on drive A.

F.dit the file X.ASM on drive B to the
tenp:>rary file X.$$$ on drive A. en
termination of editing, change x.ASM
on drive B to x.BAK, and change x.$$$
on drive A to X.ASM.

The SYSGEN transient canmand allows generation of an initialized diskette
containing the CP/M operating system. The SYSGEN program pranpts the console
for canmands, with interaction as shown below.

SYSGEN er

SYSGEN VERSIOO m.m

Initiate the SYSGEN program.

SYSGEN sign-on message.

SOURCE IlUVE NAME (OR RETURN TO SKIP)

SOURCE ON x THEN 'lYPE RETURN

FUNCI.'IOO CDMPLETE

Respond with the drive name (one
of the letters A, B, C, or D) of
the disk containing a CP/M S'jS
ten: usually A. If a copy of
CP/M already exists in memory,
due to a MJVCPM canmand, type a
er only. Typing a drive name
x will cause the response:

Place a diskette containing the
CP/M operating S'jstem on drive
x (xis one of A, B, C, or D).
Answer with er \\hen ready.

System is copied to memory.
SYSGEN wil 1 then pranpt with:

DESTINATIOO IlUVE NAME (OR RETURN TO REBCXJI')

27

If a diskette is being ini
tialized, place the new disk
into a drive and answer with
the drive name. Otherwise, type
a er arrl the system will reboot
fran drive A. Typing drive name
x will cause SYSGEN to pranpt

with:

DESTINATION ON X THEN TYPE RfilURN Place new diskette into drive
x: type return when ready.

FUOCTION CDMPLETE New diskette is initialized
in drive x.

The "IESTINATION" pranpt will be repeated tntil a single carriage return is
typed at the console, so that nore than one disk can be initialized.

Upon canplet~on of a soccessful system generation, the new diskette
contains the q;>erating system, and only the built-in canmands are available.
A factory-fresh IB~canpatible diskette appears to CP/M as a diskette with an
empty directory: therefore, the operator must copy the appropriate <X>M files
fran an existing CP/M diskette to the newly constructed diskette using the PIP
transient.

The user can cq:,y all files fran an existing diskette by typing the PIP
canmand

PIP B: = A: *.*[v) er

which cq:,ies all files fran disk drive A to disk drive B, and verifies that
each file has been cq:,ied correctly. The name of each file is displayed at
the console as the cq:,y operation proceeds.

It sh:>uld be noted that a SYSGEN does not destroy the files which already
exist on a diskette: it results only in construction of a new q:,erating
system. Further, if a diskette is being used only on drives B through D, and
will ne.ver be the source of a bootstrap operation on drive A, the SYSGEN need
not take place. In fact, a new diskette needs absolutely no initialization to
be used with CP/M.

6.7. SUBMIT ufn parm#l ••• parm#n er

The &JBMIT canmand allows CP/M canmands to be batched together for
autanatic p:-ocessin::}. The u:fn given in the SUBMIT camnand must be the
filename of a file w:iich exists on the currently logged disk, with an asst.mted
file type of "SUB." The SUB file contains CP/M prototype canmands, with
possible parameter st:bstitution. The actual parameters parm#l ••• parm#n are
substituted into the p:-ototype canmands, and, if no errors occur, the file of
substituted canmands are p:-ocessed sequentially by CP/M.

28

•

•

•

•

The prototype canmand file is created using the ED program, with
interspersed "$" parameters of the form

$1 $2 $3 ... $n

corresi;x,ndill3 to the nunt>er of actual parameters which will be included when
the file is slbmitted for execution. When the SUBMIT transient is executed,
the actual parameters parm#l ••• parm#n are paired with the formal parameters
$1 • • • $n in the rcototype canmands. If the nunt>er of formal arrl actual
parameters does not corresi;x,nd, then the sutmi t fmction is aborted with an
error message at the console. The SUBMIT fmction creates a file of
substituted canmands with the nane

on the logged disk. When the system reboots (at . the termination of the
SUBMIT), this canmarrl file is read by the CcP as a source of input, rather
than the console. If the SUBMIT ftmction is ~rformed on any disk other than
drive A, the canmarrls ·are not rcocessed tntil the disk is inserted into drive
A and the system reboots. Further, the user can abort canmand rrocessing at
any time by typing a rubout \\hen the canmand is read and echoed. In this
case, the $$$.SUB file is removed, arrl the subsequent canmands cane fran the
console. Canrnand rcocessing is also aborted if the CcP detects an error in
any of the canmands. Programs which execute tnder CP/M can abort processing of
canmarrl files when error conditions occur by simply erasing any existing
$$$.SUB file.

In order to introduce dollar signs into a SUBMIT file, the user may type
a "$$" which reduces to a single "$" within the canmand file. Further, an
utrarrow synt,ol 11111 may rcecede an alphabetic character x, which produces a
single ctl-x character within the file.

The last canmand in a SUB file can initiate another SUB file, thus
allowiD3 chained batch canmands.

SuRX)se the file ASMBL.SUB exists on disk and contains the prototype
canmaoos

arrl the canmarrl

A91 $1
DIR $1.*
ERA *.BAK
PIP $2:=$1.PRN
ERA $1.PRN

SUBMIT AfMBL X PRN er

is issued by the q;>er ator. The SUBMIT program reads the ASMBL.SUB file,
slbstitutiD3 "X" for all occurrences of $1 and "PRN" for all occurrences of
$2·, resultiD3 in a $$$.SUB file containing the canmands

29

As-tX
DIR X.*
ERA *.BAK .
PIP PRN:=X.PRN
ERA X.PRN

which are executed in sequence by the CCP.

The SUBMIT flllction can access a SUB file \tbich is on an alternate drive
by precedirg the file nane by a drive name. Sul:mitted files are only acted
up::m, however, when they appear on drive A. Thus, it is p:>ssible to create a
sutmitted file on drive B \tbich is executed at a later time \\hen it is
inserted in drive A.

6.8. OOMP ufn er

The DUMP program types the contents of the disk file {ufn) at the console
in hexadecimal form. The file contents are listed sixteen bytes at a time,
with the absolute byte address listed to the left of each line in
hexadecimal. I.Drg typeouts can be aborted by pushing the rubout key during
printout. {The s:>urce listing of the DUMP program is given in the "CP/M
Interface Guide" as an example of a program written for the CP/M environment.)

6.9. MJVCPM er

The MJVCPM program allows the user to reconfigure the CP/M system for any
particular memory size. Two ~tional parameters may be used to indicate (1)
the desired size of the new system arrl (2) the disi;x:,sition of the new system
at program termination. If the first parameter is anitted or a "*" is given,
the MJVCPM program will reconfigure the system to its maximum size, based ui;x:,n
the kilobytes of contigoous RAM in the host system {starting aat 0000H). If
the secorrl parameter is anitted, the system is executed, but not permanently
recorded: if "*" is given, the system is left in memory, ready for a SYSGEN
operation. The MJVCPM program relocates a memory image of CP/M arrl places
this image in memory in preparation for a system generation ~ration. The
canmarrl forms are:

MJVCPM er Relocate arrl execute CP/M for manage
ment of the current memory configura
tion {memory is examined for contigu
ous RAM, starting at 100H). Upon can
pletion of the relocation, the new
system is executed but not permanently
recorded on the diskette. The system
\ttTlich is constructed contains a BIOS
for the Intel MOO 800.

30

•

•

MOVCPM n er

MJVCPM **er

MJVCPM n * er

The canmand

MJVCPM * *

Create a relocated CP/M system for
management of an n kilobyte system (n
must be in the range 16 to 64), and
execute the system, as described above.

Construct a relocated memory image for
the current memory configuration, but
leave the memory image in memory, in
preparation for a SYSGEN operation.

Construct a relocated memory image for
an n kilobyte memory system, and leave
the memory image in {reparation for a
SYSGEN operation.

for example, constructs a new version of the CP/M system and leaves it in
rnernory, ready for a SYSGEN operation. The message

RF.ADY FOR "SYSGEN" OR
"SAVE 32 CPMxx.mM"

is Ir inted at the console UJ:X>n canpletion, \\here xx is the current memory size
in kilobytes. The q,erator can then type

SYSGEN er Start the system generation.

SOURCE IE.IVE NAME (OR Rfil'URN TO SKIP) Res{X)nd with a er to skip
the CP/M read operation since the system
is already in memory as a result of the
previous MJVCPM operation.

DESTINATION IRIVE NAME (OR Rfil'URN T0 REBOOI')
Resp:md with B to write new system
to the diskette in drive B. SYSGEN
will pranpt with:

DESTINATION ON B, THEN TYPE Rfil'URN
Ready the fresh diskette on drive
Band type a return \\hen ready.

Note that if you reS{X)nd with "A" rather than "B" above, the system will be
written to drive A rather than B. SYSGEN will continue to type the {ranpt:

DESTINATION IE.IVE NAME (OR Rfil'URN TO REBOOI')

until the q:>erator resp:mds with a single carriage return, \J'lich stops the

31

SYSGEN program with a system reboot.

The user can then go through the reboot process with the old or new
diskette. Instead of performirq the SYSGEN operation, the user could have
typed

SAVE 32 CPMxx.CDM

at the canpletion of the MJVCPM function, \tbich would place the CP/M memory
image on the currently logged disk in a form which can be "-p:ttched." This is
necessary when operating in a non-standard environment \\here the BIOS must be
altered for a -p:trticular peripheral device configuration, as described in
the"CP/M System Alteration Guide."

Valid t-OVCPM canrnands are given below:

t-OVCPM 4 8 er

t-OVCPM 4 8 * er

t-OVCPM **er

Construct a 48K verskon of CP/M and start
execution.

Construct a 48K version of CP/M in prepara
tion for -permanent recording: response is

READY FOR "SYSGEN" OR
"SAVE 32CPM48.CDM"

Construct a maximum memory version of CP/M
and start execution.

It is irnJ;X>rtant to note that the newly created system is serialized with
the number attached to the original diskette and is subject to the conditions
of the Digital Research Software Licensing Agreement.

32

•

•

7. BOOS ERroR r-ESSAGES.

There are three error situations \tbich the Basic Disk Operating System
intercepts during file processsing. When one of these conditions is detected,
the BOOS prints the rressage:

BOOS ERR ON x: error

where xis the drive name, and "error" is one of the three error messages:

BAD SECI'OR
SELEcr
RF.AD ONLY

The "BAD SECI'OR" message irrlicates that the disk controller electronics
has detected an error condition in reading or writing the diskette. This
condition is generally due to a malfunctioning disk controller, or an
extremely worn diskette. If you find that your system reports this error rrore
than once a rronth, you s.oould check the state of your controller electronics,
and the corrli tion of your media. You may also encounter this condition in
readil'l3 files generated by a controller produced by a different manufacturer.
Even trough controllers are claimed to be IBM-canpatible, one of ten finds
small differences in recordil'l3 formats. The MrS-800 controller, for example,
requires two bytes of one's following the data CRC byte, \tbich is not required
in the IBM format. As a result, diskettes generated by the Intel MIS can be
read by alrrost all other IBM-canpatible systems, while disk files generated on
other manufacturer's eguipnent will produce the "BAD SECI'OR" rressage when read
by the MI:6. In any case, recovery fran this condition is accomplished by
typing a ctl-C to reboot (this is the safest!) , or a return, \tbich simply
ignores the bad sector in the file q:>eration. Note, however, that typing a
return nay destroy your diskette integrity if the q:>eration is a directory
write, so make sure you have adequate backups in this case.

The "SELECT"' error occurs \\hen there is an attempt to address a drive
beyooo the A through D range. In this case, the value of x in the error
message gives the selected drive. The system reboots following any input fran
the console.

The "READ ONLY" rressage occurs when there is an attempt to write to a
diskette v.hich has been designated as read-only in a STAT canmand, or has been
set to recrl-only by the BOOS. In general, the q:>erator smuld reboot CP/M
either by using the W:irm start procedure (ctl-C) or by performing a cold start
whenever the diskettes are changed. If a changed diskette is to be read but
not written, BOOS allows the diskette to be changed without the warm or cold
start, but internally marks the drive as read-only. The status of the drive
is sti:>seguently changed to read/write if a W:irm or cold start occurs. Upon
issuing this rressage, CP/M waits for input fran the console. An automatic
warm start takes place following any input •

33

8. OPEAATICN CF CP/M ON THE MIS.

This section gives operating procedures for using CP/M on the Intel MI:S
microcanputer development system. A basic knowledge of the MI:S hardware and
software systems is assumed.

CP/M is initiated in essentially the same manner as Intel's ISIS
operating system. The disk drives are labelled 0 through 3 on the MLS,
corres};X)nding to CP/M drives A through D, respectively. The CP/M system
diskette is inserted into drive 0, arrl the roar and RESET switches are
depressed in sequence. The interrupt 2 light sh:>uld go on at this p:,int. The
space bar is then depressed on the device which is to be taken as the system
console, arrl the light sh:>uld go out (if it does not, then check connections
and baud rates). The roar switch is then turned off, arrl the CP/M signon
message sh:>uld appear at the selected console device, followed by the "A>"
system pranpt. The user can then issue the various resident and transient
canmarrls

The CP/M system can be restarted (warm start) at any time by pushing the
INT 0 switch on the front panel. The built-in Intel RCJ.i monitor can be
initiated by pushing the INT 7 switch (which generates a RST 7), except 'ttlen
operatiIXJ mder DOI', in mich case the DOI' program gets control instead.

•

Diskettes can be renoved fran the drives at any time, arrl the system can -
be shut down during operation wi trout affecting data integrity. Note,
however, that the user must not renove a diskette arrl replace it with another
without rebooting the system (cold or warm start) , unless the inserted
diskette is "read only."

rue to hardware hang-ups or malfunctions, CP/M may type the message

BOOS ERR ON x: BAD SECTOR

where x is the drive which has a permanent error. This error may occur 'ttlen
drive doors are q:,ened arrl closed randanly, followed by disk operations, or
may be due to a diskette, drive, or controller failure. The user can
optionally elect to ignore the error by typing a single return at the
console. The error may produce a bad data record, requiring re-initialization
of up to 128 bytes of data. The operator can reboot the CP/M system arrl try
the q:>eration cgain.

Termination of a CP/M session requires no si;:ecial action, except that it
is necessary to renove the diskettes before turning the µ:,wer off, to avoid
randan transients mich often make their way to the drive electronics.

It smuld be noted that factory-fresh IBM-canpatible diskettes should be
used rather than diskettes which have previously been used with any ISIS
version. In particular, the ISIS "FORMAT" q:,eration produces non-standard
sector nurrbering throughout the diskette. This non-standard nurrbering •
seriously degrades the performance of CP/M, arrl will operate noticeably slower

34

•

than the distribution version. If it becomes necessary to reformat a diskette
(which sh:>uld not be the case for standard diskettes), a ~ogram can be

written mder CP/M \\hich causes the MCS 800 controller to reformat with
sequential sector nurrbering (1-26) on each track.

-----------------------------·-------
Note: "MIS 800" arrl "ISIS" are raJistered trademarks of Intel Cor:poration •

35

•

'\

•

:,

• • • 1

, ,.,.. - -

DI [)~[j~Tfll RESEflRCH
Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M 2.0 INTERFACE GUIDE

Copyright (c) 1979

DIGITAL RESEARCH

Copyright (c) 1979 by Digital Research. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into
any language or computer language, in any form or by any
means, electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written permission of
Digital Research, Post Office Box 579, Pacific Grove,
California 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any parti
cular purpose. Further, Digital Research reserves the right
to revise this publication and to make changes from time to
time in the content hereof without obligation of Digital
Research to notify any person of such revision or changes.

..

•

1.

2.

3.

4.

5.

6.

Introduction ••

CP/M 2.0 INTERFACE GUIDE

Copyright (c) 1979
Digital Research, Box 579
Pacific Grove, California

.
Operating System Call Conventions

A Sample File-to-File Copy Program

.

1

3

A Sample File Dump Utility

A Sample Rand001 Access Program.

System Function Summary

• • • 2 9

• • • 3 4

• 37

• • • • 4 6

•

•

•

•

1. INTRODUCTION.

This manual describes CP/M,
including the structure of memory
intention is to provide the necessary
programs which operate under CP/M,
disk I/0 facilities of the system.

release 2, system organization
and system entry points. The

information required to write
and which use the peripheral and

CP/M is logically divided into four parts, called the Basic I/0
System (BIOS), the Basic Disk Operating System (BDOS), the Console
command processor (CCP), and the Transient Program Area (TPA). The
BIOS is a hardware-dependent module which defines the exact low level
interface to a particular computer system which is necessary for
peripheral device I/0. Although a standard BIOS is supplied by
Digital Research, explicit instructions are provided for field
reconfiguration of the BIOS to match nearly any hardware environment
(see the Digital Research manual entitLed "CP/M Alteration Guide").
The BIOS and BDOS are logically combined into a single module with a
common entry point, and referred to as the FOOS. The CCP is a
distinct pr-ogram which uses the FOOS to provide a human-oriented
interface to the information which is cataloged on the backup storage
device. The TPA is an area of memory (i.e., the portion which is not
used by the FOOS and CCP) where various non-resident operating system
commands and user programs are executed. The lower portion of memory
is reserved for system information and -is detailed later sections.
Memory organization of the CP/M system in shown below:

high I
memory I

I FOOS (BDOS+BIOS)
FBASE: I

1
I CCP

CBASE: I

1
I
I
I TPA
I

TBASE: I

system parameters
BOOT:

The exact memory addresses corresponding to BOOT, TBASE, CBASE, and
FBASE vary from version to version, and are described fully in the
"CP/M Alteration Guide." All standard CP/M versions, however, assume
BOOT = 0000H, which is the base of random access memory. The machine
code found at location BOOT performs a system "warm start" which loads
and initializes the programs and variables necessary to return control
to the CCP. Thus, transient programs need only jump to location BOOT

(All Information Contained Herein is Proprietary to Digital Research.)

1

to return control to CP/M at the command level. Further, the standard
versions assume TBASE = BOOT+01008 which is normally location 01008.
The principal entry point to the FOOS is at location BOOT+00058
(normally 00058) where a jump to FBASE is found. The address field at
BOOT+00068 (normally 00068) contains the value of FBASE and can be •
used to determine the size of available memory, assuming the CCP is •
being overlayed by a transient program.

Transient
follows. The
1 ines following
forms:

programs are loaded into the TPA and executed as
operator communicates with the CCP by typing command

each prompt. Each command line takes one of the

command
command f ilel
command filel file2

where "command" is either a built-in function such as DIR or TYPE, or
the name of a transient command or program. If the command is a
built-in function of CP/M, it is executed immediately. Otherwise, the
CCP searches the currently addressed disk for a file by the name

command. COM

If the file is found, it is assumed to be a memory image of a program
which executes in the TPA, and thus implicitly originates at TBASE in
memory. The CCP loads the COM file from the disk into memory starting
at TBASE and possibly extending up to CBASE.

If the command is
the CCP prepares one
system parameter area.
to access files through
section.

followed by one or two file specifications,
or two file control block (FCB) names in the

These optional FCB's are in the form necessary
the FOOS, and are described in the next

The transient program r ·eceives control from the CCP and begins
execution, perhaps using the I/0 facilities of the FOOS. The
transient program is "called" from the CCP, and thus can simply return
to the CCP upon completion of its processing, or can jump to BOOT to
pass control back to CP/M. In the first case, the transient program
must not use memory above CBASE, while in the latter case, memory up
through FBASE-1 is free.

The transient program may use the CP/M I/0 facilities to
communicate with the operator's console and peripheral devices,
including the disk subsystem. The I/0 system is accessed by passing a
"function number" and an "information address" to CP/M through the
FOOS entry point at BOOT+0005H. In the case of a disk read, for
example, the transient program sends the number corresponding to a
disk read, along with the address of an FCB to the CP/M FOOS. The
FOOS, in turn, performs the operation and returns with either a disk
read completion indication or an error number indicating that the disk
read was unsuccessful. The function numbers and error indicators are
given in below.

(All Information Contained Herein is Proprietary to Digital Research.)

2

•

•

"

2. OPERATING SYSTEM CALL CONVENTIONS.

The purpose of this section is to provide detailed information
for performing direct operating system calls from user programs. Many
of the functions listed below, however, are more simply accessed
through the I/0 macro library provided with the MAC macro assembler,
and listed in the Digital Research manual entitled "MAC Macro
Assembler: Language Manual and Applications Guide. 11

CP/M facilities which are available for access by transient
programs fall into two general categories: simple device I/0, and
disk file I/0. The simple device operations include:

Read a Console Character
Write a Console Character
Read a Sequential Tape Character
Write a Sequential Tape Character
write a List Device Character
Get or Set I/0 Status
Pr int Console Buffer
Read Console Buffer
Interrogate Console Ready

The FOOS operations which perform disk Input/Output are

Disk System Reset
Drive Selection
File Creation
File Open
File Close
Directory Search
File Delete
File Rename
Random or Sequential Read
Random or Sequential Write
Interrogate Available Disks
Interrogate Selected Disk :J
Set OMA Address ut
Set/Reset File Indicators ~

As mentioned above, access to the FOOS functions is accomplished
by passing a function number and information address through the
primary entry point at location BOOT+0005H. In general, the function
number is passed in register C with the information address in the
double byte pair DE. Single byte values are returned in register A,
with double byte values returned in HL (a zero value is returned when
the function number is out of range}. For reasons of compatibility,
register A= Land register B = H upon return in all cases. Note that
the register passing conventions of CP/M agree with those of Intel's
PL/M systems programming language. The list of CP/M function numbers
is given below.

(All Information Contained Herein is Proprietary to Digital Research.}

3

fk,

0 System Reset 19 Delete File
1 Console Input 20 Read Sequential
2 Console Output 21 Write Sequential
3 Reader Input 22 Make File
4 Punch Output 23 Rename File
5 List output 24 Return Login Vector
6 Direct Console I/0 25 Return Current Disk
7 Get I/0 Byte '26 Set OMA Address
8 Set I/0 Byte 27 Get Addr (Alloc)
9 Pr int String 28 Write Protect Disk

10 Read Console Buffer 29 Get R/0 Vector
11 Get Console Status 30 Set File Attributes
12 Return Version Number 31 Get Addr(Disk Parms)
13 Reset Disk System 32 Set/Get User Code
14 Select Disk 33 Read Random
15 Open File 34 Write Random
16- Close File 35 Compute File Size
17 Search for First 36 Set Random Record
18 Search for Next

(Functions 28 and 32 should be avoided in application programs to
maintain upward compatibility with MP/M.)

Upon entry to a transient program, the CCP leaves the stack
pointer set to an eight level stack area with the CCP- return 'address
pushed onto the stack, leaving seven levels before overflow occurs.
Although this stack is usually not used by a transient program (i.e.,
most transients return to the CCP though a jump to location 0000H), it
is sufficiently large to make CP/M system calls since the FDOS
switches to a local stack at system entry. The following assembly
language program segment, for example, reads characters continuously
until an asterisk is encountered, at which time control returns to the
CCP (assuming a standard CP/M system with BOOT= 0000H):

BDOS EQU 0005H ; STANDARD CP /M ENTRY
CONIN EQU 1 -! ;CONSOLE INPUT FUNCTION . _;jy_1 ,

b ORG 0100H ;BASE OF TPA
NEXTC: MVI C, CON IN 1 rh ;READ NEXT CHARACTER

CALL BOOS ; RE'rURN CHARACTER IN <A>
CPI . *. ;END OF PROCESSING?
JNZ NEXTC ;LOOP IF NOT
RET ; RE'rURN TO CCP
END

CP/M implements a named file structure on each disk, providing a
logical organization which allows any particular file to contain any
number of records from completely empty, to the full capacity of the
drive. Each drive is logically distinct with a disk directory and
file data area. The disk file names are in three parts: the drive
select code, the file name consisting of one to eight non-blarik
characters, and the file type consisting of zero to three non-blank
characters. The file type names the generic category of a particular
file, while the file name distinguishes individual files in each
category. The file types listed below name a few generic categories

(All Information Contained Herein is Proprietary to Digital Research.)

4

•

•

•

which have been established, although they are generally arbitrary:

ASM Assembler Source PLI PL/I Source File
PRN Pr inter Listing REL Relocatable Module
HEX Hex Machine Code TEX TEX Formatter Source
BAS Basic Source File BAK ED source Backup
INT Intermediate Code SYM SID Symbol File
COM CCP Command File $$$ Temporary File

Source files are treated as a sequence of ASCII characters, where each
"line" of the source file is followed by a carriage-return line-feed
sequence (0DH followed by 0AH). Thus one 128 byte CP/M record could
contain several lines of source text. The end of an ASCII file is
denoted by a control-Z character (lAH) or a real end of file, returned
by the CP/M read operation. Control-Z characters embedded within
machine code files (e.g., COM files) are ignored, however, and the end
of file condition returned by CP/M is used to terminate read
operations.

Files in CP/M can be thought of as a sequence of up to 65536
records of 128 bytes each, numbered from 0 through 65535, thus
allowing a maximum of 8 megabytes per file. Note, however, that
although the records may be considered logically contiguous, they may
not be physically contiguous in the disk data area. Internally, all
files are broken into 16K byte segments called logical extents, so
that counters are easily maintained as 8-bit values. Although the
decanposition into extents is discussed in the paragraphs which
follow, they are of no particular consequence to the programmer since
each extent is automatically accessed in both sequential and random
access modes.

In the file operations starting with function number 15, DE
usually addresses a file control block (FCB). Transient programs
often use the default file control block area reserved by CP/M at
location BOOT+005CH (normally 005CH) for simple file operations. The
basic unit of file information is a 128 byte record used for all file
operations, thus a default location for disk I/O is provided by CP/M
at location BOOT+0080H (normally 0080H) which is the initial default
DMA address (see function 26). All directory operations take place in
a reserved area which does not affect write buffers as was the case in
release 1, with the exception of Search First and Search Next, where
compatibility is required.

The File Control Block (FCB) data area consists of
33 bytes for sequential access and a series of 36 bytes
that the file is accessed randanly. The default file
normally located at 005CH can be used for random access
the three bytes starting at BOOT+007DH are available for
The FCB format is shown with the following fields:

a sequence of
in the case
control block
files, since
this purpose.

(All Information Contained Herein is Proprietary to Digital Research.)

5

--
ldrlfllf21/ /lf8ltllt2lt31exlslls2lrcld01/ /ldnlcrlr0lrllr21
---~--------

00 01 02 ••• 08 09 10 11 12 13 14 15 16 ••• 31 32 33 34 35

where

dr drive code (0 - 16)
0 => use default drive for file
1 => auto disk select drive A,
2 => auto disk select drive B,
. . .
16=> auto disk select drive P.

fl ••• f8 contain the file name in ASCII
upper case, with high bit= 0

tl,t2,t3 contain the file type in ASCII
upper case, with high bit= 0
tl', t2', and t3' denote the
bit of these positions,
tl' = 1 => Read/Only file,
t2' = 1 => SYS file, no DIR list

ex contains the current extent number,
normally set to 00 by the user, but
in range 0 - 31 during file I/O

sl reserved for internal system use

s2 reserved for internal system use, set
to zero on call to OPEN, MAKE, SEARCH

re record count for extent "ex,"
takes on values ~rom 0 - 128

d0 ••• dn filled-in by c~fi~ reserved for
system use 1

!..
...... .i ..

er current record to read or write in
a sequential file operation, normally
set to zero by user

r0,rl,r2 optional random record number in the
range 0-65535, with overflow to r2,
r0,rl constitute a 16-bit value with
low byte r 0·, and high byte r 1

Each file being accessed through CP/M must have a corresponding
FCB which provides the name and allocation information for all
subsequent file operations. When accessing files, it is the
programmer's responsibility to fill the lower sixteen bytes of the FCB
and initialize the "er" field. Normally, bytes 1 through 11. are set
to the ASCII character values for the file name and file type, while
all other fields are zero.

(All Information Contained Herein is Proprietary to Digital Research.)

6

•

•

•
FCB's are stored in a directory area of the disk, and are

brought into central memory before proceeding with file operations
(see the OPEN and MAKE functions). The memory copy of the FCB is
updated as file operations take place and later recorded permanently
on disk at the termination of the file operation (see the CLOSE
command) •

The CCP constructs the first sixteen bytes of two optional FCB's
for a transient by scanning the remainder of the line following the
transient name, denoted by "f ilel II and "f ile2" in the prototype
command line described above, with unspecified fields set to ASCII
blanks. The first FCB is constructed at location BOOT+005CH, and can
be used as-is for subsequent file operations. The second FCB occupies
the d0 ••• dn portion of the first FCB, and must be moved to another
area of memory before use. If, for example, the operator types

PROGNAME B:X.ZOT Y.ZAP

the file PROGNAME.COM is loaded into the TPA, and the default FCB at
BOOT+005CH is initialized to drive code 2, file name "X" and file type
"ZOT". The second drive code takes the default value 0, which is
placed at BOOT+006CH, with the file name .. Y" placed into location
BOOT+006DH and file type ''ZAP" located 8 bytes later at BOOT+0075H.
All remaining fields through "er" are set to zero. Note again that it
is the programmer's responsibility to move this second file name and
type to another area, usually a separate file control block, before
opening the file which begins at BOOT+005CH, due to the fact that the
open ope~ation will overwrite the second name and type.

• If no file names are specified in the original command, then the
fields beginning at BOOT+005DH and BOOT+006DH contain blanks. In all
cases, the CCP translates lower case alphabetics to upper case to be
consistent with the CP/M file naming conventions.

As an added convenience, the defauIU buffer area at location
BOOT+0080H is initialized to the comw~nd line tail typed by the
operator following the program name. The first position contains the
number of characters,· with the characters themselves following the
character count. Given the above command line, the area beginning at
BOOT+0080H is initialized as follows:

BOOT+0080H:
+00 +01 +02 +03 +04 +05 +06 +07 +08 +09 +10 +11 +12 +13 +14

14 11
" "B" ":" "X" "." "Z" "O" "T" 11

.. "Y" 11
•

11 "Z" "A" "P"

where the characters are translated to upper case ASCII with
uninitialized memory following the last valid character. Again, it is
the responsibility of the programmer to extract the information from
this buffer before any file operations are performed, unless the
default DMA address is explicitly changed.

The individual functions are described in detail in the pages
which follow.

(All Information Contained Herein is Proprietary to Digital Research.)

7

* *
* FUNCTION 0: System Reset *
* *

* Entry Parameters: *
* Register C: 00H *

The system reset function returns control to the CP/M operating
system at the CCP level. The CCP re-initializes the disk subsystem by
selecting and logging-in disk drive A. This function has exactly the
same effect as a jump to location BOOT.

*
* FUNCTION 1: CONSOLE INPUT

*
*

* *

*
*
*

Entry Parameters:
Register C: 01H

*
*
*

* Returned Value: *
* Register A: ASCII Character*

The console input function reads the next console character to
register A. Graphic characters, along with carriage return, line
feed, and backspace (ctl-H) are echoed to the console. Tab characters A
(ctl-I) are expanded in columns of eight characters. A check is made W
for start/stop scroll (ctl-S) and start/stop printer echo (ctl-P).
The FOOS does not return to the calling program until a character has
been typed, thus suspending execution if a character is not ready.

* *
* FUNCTION 2: CONSOLE OUTPUT *
* *

* Entry Parameters: *
* Register C: 02H *
* Register E: ASCII Character*
* *

The ASCII character from register E is sent to the console
device. Similar to function 1, tabs are expanded and checks are made
for start/stop scroll and printer echo.

(All Information Contained Herein is Proprietary to Digital Research.)

8

•

•

*********************************~*****
*
* FUNCTION 3: READER INPUT
*

*
*
*

*
*
*

Entry Parameters:
Register C: 03H

*
*
*

* Returned Value: *
* Register A: ASCII Character~

The Reader Input function reads the next character from the
logical reader into register A (see the IOBYTE definition in the "CP/M
Alteration Guide"). Control does not return until the character has
been read.

* *
* FUNCTION 4: PUNCH OUTPUT
*

*
*

* Entry Parameters: *
* Register C: 04H *
* Register E: ASCII Character*
* *

The Punch Output function sends the character from register E to
the logical punch device.

*
* FUNCTION 5: LIST OUTPUT
*

* Entry Parameters: *
* Regi~te~ C: 05H *
* Register E: ASCII Character*
* *

The List Output function sends the ASCII character in register E
to the logical listing device.

(All Information Contained Herein is Proprietary to Digital Research.)

9

* * * FUNCTION 6: DIRECT CONSOLE I/0 *
* *

* Entry Parameters: *
* Register C: 06H *
* Register E: 0FFH (input) or *
* char (output) *
* *
* Returned Value: *
* Register A: char or status *

(no value) *

Direct console I/0 is supported under CP/M for those specialized
applications where unadorned console input and output is required.
Use of this function should, in general, be avoided since it bypasses
all of CP/M's normal control character functions (e.g., control-S and
control-P). Programs which perform direct I/0 through the BIOS under
previous releases of CP/M, however, should be changed to use direct
I/0 under BOOS so that they can be fully supported under future
releases of MP/Mand CP/M.

Upon entry to function 6, register E either contains hexadecimal
FF, denoting a console input request, or register E contains an ASCII
character. If the input value is FF, then function 6 returns A= 00
if no character is ready, otherwise A contains the next console input
character.

If the input value in Eis not FF, then function 6 assumes that
E contains a valid ASCII character which is sent to the console.

(All Information Contained Herein is Proprietary to Digital Research.)

10

•

•

*
* FUNCTION 7: GET I/O BYTE
*

*
*
*

*
*
*

Entry Parameters:
Register C: 07H

*
*
*

* Returned Value: *
* Register A: I/O Byte Value *

The Get I/O Byte function returns the current value of IOBYTE in
register A. See the "CP/M Alteration Guide" for IOBYTE definition.

* *
*
*

FUNC"rION 8: SET I/O BYTE *
*

* Entry Parameters: *
* Register C: 08H *
* Register E: I/O Byte Value *
* *

The Set I/O Byte function changes the system IOBYTE value to
that given in register E •

*
* FUNCTION 9: PRINT STRING
*

*
*
*

*
*
*
*

Entry Parameters:
Register C:
Registers DE:

09H
String Address

*
*
*
*

The Print String function sends the character string stored in

memory at the location given by DE to the console device, until a"$"
is encountered in the string. Tabs are expanded as in function 2, and
checks are made for start/stop scroll and printer echo.

(All Information Contained Herein is Proprietary to Digital Research.)

11

* *
* FUNCTION 10: READ CONSOLE BUFFER *
* *

*
*
*

Entry Parameters:
Register C:
Registers DE:

*
0AH *
Buffer Address *

* *
* Returned Value: *
* Console Characters in· Buffer *

The Read Buffer function reads a line of edited console input
into a buffer addressed by registers DE. Console input is terminated
when either the input buffer overflows. The Read Buffer takes the
form:

DE: +0 +l +2 +3 +4 +5 +6 +7 +8

lmxlnclcllc2lc3lc4lc5lc6lc71

. . . +n

l??I

where "mx" is the maximum number of characters which the buffer will
hold (1 to 255), "nc" is the number of characters read (set by FDOS
upon return), followed by the characters read f¾om the console. if nc
< mx, then uninitialized positions follow the last character, denoted
by "??" in the above figure. A number of control functions are
recognized during line editing:

rub/del
ctl-C
ctl-E
ctl-H
ctl-J
ctl-M
ctl-R
ctl-U
ctl-X

removes and echoes the last character
reboots when at the beginning of line
causes physical end of line
backspace~,one character position
(line feed-L'terminates input line
(return)' fl.fninates i1;put l 1ine
retypes t ~urrent line after new line
removes currnt line after new line
backspaces to beginning of current line

Note also that certain functions which return the carriage to the
lefbnost position (e.g., ctl-X) do so only to the column position
where the prompt ended (in earlier releases, the carriage returned to
the extreme left margin). This convention makes oper.ator data input
and line correction more legible.

(All Information Contained Herein is Proprietary to Dig'i tal· Research.)

12

I

•

•

* *
* FUNC'rION 11: GET CONSOLE STATUS *
* *

*
*
*

Entry Parameters:
Register C: 0BH

*
*
*

* Returned Value: *
* Register A: Console Status *

The Console Status function checks to see if a character has
been typed at the console. If a character is ready, the value 0FFH is
returned in ·register A. Otherwise a 00H value is returned.

* * * FUNCTION 12: RETURN VERSION NUMBER *
* *

* Entry Parameters: *
* Register C: 0CH *
* *
* Returned Value: *
* Registers HL: Version Number *

Function 12 provides information which allows version
independent programming. A two-byte value is returned, with H = 00
designating the CP/M release (H = 01 for MP/M), and L = 00 for all
releases previous to 2.0. CP/M 2.0 returns a hexadecimal 20 in
register L, with subsequent version 2 releases in the hexadecimal
range 21, 22, through 2F. Using function 12, for example, you can
write application programs which prov~i'i.!:! : both sequential and random
access functions, with ·random access di ~cl.pled when operating under
early releases of CP/M. 111

(All Information Contained Herein is Proprietary to Digital Research.)

13

* *
* FUNCTION 13: RESET DISK SXSTEM *
* * ***************************************
* Entry Parameters: *
* Register C: 0DH *
* *

The Reset Disk Function is used to programmatically restore the
file system to a reset state where all disks are set to read/write
(see functions 28 and 29), only disk drive A ip selected, and the
default DMA address is reset to BOOT+0080H. This function can be
used, for example, by an application program which requires a disk
change without a, system reboot.

***********~***************************
* *
* FUNCTION 14: SELECT DISK
*

*
*

* Entry Parameters: *
* Register, C: 0EH *
* Register .E: Selected Disk *
* *
***************************~***********

The Select Disk function designates the disk drive named in
register E as the default disk for subsequent file operations, with E
= 0 for drive A, 1 for drive B, and so-forth through 15 corresponding
to drive Pin a full sixteen drive system. The drive is placed in an
"on-line" status -which, in pc;trticular, activates its directory until
the next cold start, warm start, or disk system reset operation. If
the disk media is changed while it is on-line, the drive automatically
goes to a read/only status in a standard CP/M environment (see
function 28). FCB's which specify drive code zero (dr = 00H)
automatically reference the currently selected default drive. Drive
code values between 1 and 16, however, ignore the selected default
drive and directly reference drives A through P.

(All Information Contained Herein is Proprietary to Digital Research.)

14

•

•

..

•

•

c,

**********************************~****
*
* FUNCTION 15: OPEN FILE
*

*
*
*

* Entry Parameters: *
* Register C: 0FH *
* Registers DE: .FCB Ad~ress *
* *
* Returned Value: *
* Register A: Directory Code *

The Open File operation is used to activate a file which
currently exists in the disk directory for the currently active user
number. The FDOS scans the refere~ced disk directory for a •atch in
positions 1 ~hrough 14 of the FCB r~ferenced by DE (byte sl is
autanatically zeroed), where an ASCII gues-tion 'mark (3FH) matches any
directory characte~ in any of these positions. Normally, no question
marks are included and, further, bytes 11 ex 11 and 11 s2" of the FCB are
zero.

If a directory element is matched, the relevant dj.r·ectory
information is copied into bytes d0 through dn of the FCB, thus
al,lowing acce·ss to the files through subsequent read and write
operations~ Note that an existing file must not be accessed un~il a
sucessful open operation is completed. Upon return, the open function
returns a "directory code" with the value 0 through 3 if the oper:r was
successful, or 0FFH (255 decimal) {f t,he "tile cannot be found. If
question marks occur in the FCB then the first matching FCB is
aG:tiva ted. Note that the cur rent r:ecord ("er") must be zeroed by the
program if the file is to be accessed sequentially from the first
record.

(All Information Contained Herein is· Proprietary to Digital Research.)

15

*
* FUNCTION 16: CLOSE FILE
*

*
*
*

*
*
*
*

Entry Parameters:
Register C:
Registers DE:

10H
FCB Address

* Returned Value: *
* Register A: Directory Code *

The Close File function performs the inverse of the open file
function. Given . that the FCB addressed by DE has been previously
activated through an open or make function (see functions 15 and 22),
the close function permanently records the new FCB in the referenced
disk directory. The FCB matching process for the close is identical
to the op~n function. The directory code returned for a successful
close operation is 0, 1, 2, or 3, while a 0FFH (255 decimal) is
returned · if the file name cannot be found in the directory. A file
need not be closed if only read operations have taken place. If write
operations have occurred, however, the close operation is necessary to
permanently record the new directory information.

(All Information Contained Herein is Proprietary to Digital Research.)

16

•

•

* *
* FUNCTION 17: SEARCH FOR FIRST *
* *

* Entry Parameters: *
* Register C: llH *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Directory Code *

Search First scans the directory for a match with the file given
by the FCB addressed by ,DE. The value 2S5 (hexadecimal FF} is
retur·ned if the file is not found, otherwise 0, 1, 2, or• 3 is returned
indicating the ~ile is present. In the case that the file is found,
the current DMA address is filled with the record containing the
directory entry, and the relative starting position is A* 32 (i.e.,
rotate the A register left 5 bits, or ADD A five times}. Although not
normally required for application programs, the directory i~formation
can be extracted from the bu·f fer at this position.

An ASCII question mark (63 decimal, 3F hexadecimal) in any
position from 11 fl '1 through "ex" matches the corresponding field of any
directory entry on the default or auto-selected disk drive. If the
11 dr" field contains an ASCII question mark, then the auto disk select
function is disabled, the default disk is searched, with the search
function returning any matched entry, allocated or free, belonging to
any user number. This latter function is not normally used by
application programs, but does allow complete flexibility to scan all
current directory values. If the "dr 11 field is not a question mark,
the 11 s2" byte is automatically zeroed.

*
* FUNCTION 18: SEARCH FOR NEXT
*

*
*
*

* Entry Parameters: *
: Register C: 12H !
* Returned Value: *
* Register· A: Directory Code *
****************~**********************

The Search Next function is similar to the Search First
function, except that the directory scan continues from the last
matched entry. Similar to function 17, function 18 returns the
decimal value 255 in A when no more directory items match.

(All Inform~tion Contained Herein is Proprietary to Digital Research.)

17

*
* FUNCTION 19: DELETE FILE

*
*

* *

* Entry Parameters: *
* Register C: 13H *
* Registers DE: FCB Address *
*
* Returned Value:
* Register A:

*
* Directory Code *

The Delete File function removes files which match the FCB
addressed by DE. The filename and type may contain ambiguous
references (i.e., question marks in various positions), but the drive
select code cannot be ambiguous, as in the Search and Search Next
functions.

Function 19 returns a decimal 255
files cannot be found, otherwise a
returned.

* *
*
*

FUNCTION 20: READ SEQUENTIAL *
*

*
*
*

Entry Parameters:
Register C:
Registers DE:

14H
FCB Address

*
*
*

* *
* Returned Value: *
* Register A: Directory Code *

if the
value

referenced file or
in the range 0 to 3 is

Given that the FCB addressed by DE has been activated through an
open or make function (numbers 15 and 22), the Read Sequential
function reads the next 128 byte record from the file into memory at
the current DMA address. the record is read from position "er" of the
extent, and the "er" fielo is automatically incremented to the next
record position. If the "er" field overflows then the next logical
extent is automatically opened and the "er" field is reset to zero in
preparation for the next read operation. The value 00H is returned in
the A register if the read operation was successful, while a non-zero
value is returned if no data exists at the next record position (e.g.,
end of file occurs).

(All Information Contained Herein is Proprietary to Digital Research .)

18

* *
*
*

FUNCTION 21: WRITE SEQUENTIAL *
*

* Entry Parameters: *
* Register C: 15H *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Directory Code *

Given that the FCb addressed by DE has been activated through an
open or make function (numbers 15 and 22), the Write Sequential
function writes the 128 byte data record at the current OMA address to
the file named by the FCB. the record is placed at position "er" of
the file, and the 11 cr" field is automatically incremented to the next
record position. If the "er" field overflows then the next logical
extent is automatically opened and the "er" field is reset to zero in
preparation for the next write operation. Write operations can take
place into an existing file, in which case newly written records
overlay those which already exist in the file. Register A= 00H upon
return from a successful write operation, while a non-zero value
indicates an unsuccessful write due to a full disk.

* *
* FUNCTION 22: MAKE FILE *
* *

* Entry Parameters: *
* Register C: 16H *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Directory Code *

The Make File operation is similar to the open file operation
except that the FCB must name a file which does not exist in the
currently referenced disk directory (i.e., the one named explicitly by
a non-zero "dr" code, or the default disk if "dr 11 is zero). The FOOS
creates the file and initializes both the directory and main memory
value to an empty file. The programmer must ensure that no duplicate
file names occur, and a preceding delete operation is sufficient if
there is any possibility of duplication. Upon return, register A= 0,
1, 2, or 3 if the operation was successful and 0FFH (255 decimal) if
no more directory space is available. The make function has the
side-effect of activating the FCB and thus a subsequent open is not
necessary.

(All Information Contained Herein is Proprietary to Digital Research.)

19

*
*
*

FUNCTION 23: RENAME FILE
*
*
*

* Entry Parameters: *
* Register C: 17H *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Directory Code *

The Rename function uses the FCB addressed by DE to change all
occurrences of the file named in the first 16 bytes to the file named
in the second 16 bytes. The drive code "dr" at position 0 ls used to
select the drive, while the drive code for the new file name at
position 16 of the FCB is assumed to be zero. Upon return, register A
is set to a value between 0 and 3 if the rename was successful, and
0FFH (255 decimal) if the first file name cou'ld not be found in the
directory scan.

*
* FUNCTION 24: RETURN LOGIN VECTOR
*

*
*
*

*
*
*

Entry Parameters:
Register C: 18H

*
*
*

* Returned Value: *
* . , Regist~rs HL: Login Vector *

The login vector value returned by CP/M is a 16-bit value in HL,
wher~ the least significant bit of L corresponds to the first drive A~
and the high order bit of H corresponds to the sixteenth drive,
labelled P. A "0" bit indicates that the drive is rtot on-line, while
a 11 1" bit marks an drive that is actively on-line due to an explicit
disk drive selection, or an implicit drive select caused by a file
operation which specified a non-zero "dr" field. Note that
compatibility is maintained with earlier releases, since registers A
and L contain the same values upon return.

(All Information Contained Herein is Proprietary to Digital Research.)

20

•

•

•

* *
* FUNCTION 25: RETURN CURRENT DISK *
* *

* Entry Parameters: *
* Register C: 19H *
* * * Returned Value: *
* Register A: Current Disk *

Function 25 returns the currently selected default disk number
in register A. The disk numbers range from 0 through 15 corresponding
to drives A through P.

*
* FUNCTION 26: SET OMA ADDRESS
*

*
*
*

*
*
*
*

Entry Parameters:
Register C:
Registers DE:

lAH
OMA Address

*
*
*
*

','DMA" is an acronym for Direct Memory Address, which is often
used 1n connection with disk controllers which directly access the
memory of the mainframe computer to transfer data to and from the disk
subsystem. Although many computer systems use non-DMA access (i.e.,
the data is transfered through programmed I/0 operations), the OMA
address has, in CP/M, come to mean the address at which the 128 byte
data record / resides before a disk write and after a disk read. Upon
cold start, warm start, or disk system reset, the OMA address is
autanatically set to BOOT+0080H. The Set DMA function, however, can
be used to change this default value to address another area of memory
where the data records reside. Thus, the OMA address becomes the
value specified by DE until it is changed by a subsequent Set OMA
function, cold start, warm start, or disk system reset.

(All Information Contained Herein is Proprietary to Digital Research.)

21

* *
* FUNCTION 27: GET ADDR(ALLOC)
*

*
*

* Entry Parameters: *
* Register C: lBH *
* *
* Returned Value: *
* Registers HL: ALLOC Address *

An "allocation vector" is maintained in main memory for each
on-line disk drive. Various sy~tem programs use the information
provided by the allocation vector to determine the amount of remaining
storage (see the STAT program). Function 27 returns the base address
of the allocation vector for the currently selected disk drive. The
allocation information may, however, be invalid if the selected disk
has been marked read/only. Although this function is not normally
used by application programs, additional details of the allocation
vector are found in the "CP/M Alteration Guide."

* *
* FUNCTION 28: WRITE PROTECT DISK *
* *

*
*
*

Entry Parameters:
Register C: lCH

*
*
*

The disk write protect function provides temporary write
protection for the currently selected disk. Any attempt to write to
the disk, before the next cold or warm start operation produces the
message

Bdos Err on d: R/0

(All Information Contained Herein is Proprietary to Digital Research.)

22

•

•

. ,,

•

* *
* FUNCTION 29: GET READ/ONLY VECTOR *
* *

* Entry Parameters: *
* Register C: lDH *
* *
* Returned Value: *
* Registers HL: R/0 Vector Value*

Function 29 ~eturns a bit vector in register pair HL which
indicates drives which have the temporary read/only bit set. Similar
to function 24, the least significant bit corresponds to drive A,
while the most significant bit corresponds to drive P. The R/0 bit is
set either by an explicit call to function 28, or by the automatic
software mechanisms within CP/M which detect changed disks.

* *
* FUNCTION 30: SET FILE ATTRIBUTES *
* *

* Entry Parameters: *
* Register C: lEH *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Directory Code *

The Set File Attributes function allows programmatic
manipulation of permanent indicators attached to files. In
particular, the R/0 and System attributes (tl' and t2 1

) can be set or
reset. The DE pair addresses an unambiguous file .name with the
appropriate attributes set or reset. Function 30 searches for a
match, and changes the matched directory entry to contain the selected
indicators. Indicators fl' through f4 1 are not presently used, but
may be useful for applications programs, since they are not involved
in the matching process during file open and close operations.
Indicators f5' through f8' and t3 1 are reserved for future system
expansion.

(All Information Contained Herein is Proprietary to Digital Research.)

23

*
*
*

FUNCTION 31: GET ADDR(DISK PARMS)
*
*
*

*
*
*

Entry Parameters:
Register C: lFH

*
*
*

* Returned Value: *
* Registers HL: DPB Address *

The address of the BIOS resident disk parameter block is
returned in HL as a result of this function call. This address can be
used for either of two purposes. First, the disk parameter values can
be extracted for display and space computation purposes, or transient
programs can dynamically change the values of current disk parameters
when the disk environment changes, if required. Normally, application
programs will not require this facility.

* *
* FUNCTION 32: SE'r/GE'r USER CODE *
* *

* Entry Parameters: *
* Register C: 20H *
* Register E: 0FFH (get) or *
* User Code (set) *
* *
* Returned Value: *
* Register A: Current Code or*
* (no value) *
~********************************

An application program can change or interrogate the currently
active user number by calling function 32. If register E = 0FFH, then
the value of the current user number is returned in register A, where
the value is in the range 0 to 31. If register Eis not 0FFH, then
the current user number is changed to the value of E (modulo 32).

(All Information Contained Herein is Proprietary to Digital Research.)

24

•

•

•

•

*
* FUNCTION 33: READ RANDOM
*

*
*
*

* Entry Parameters: *
* Regis t er C : 21 H *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Return Code *

The Read Random function is similar to the sequential file read
operation of previous releases, except that the read operation takes
place at a particular record number, selected by the 24-bit value
constructeg from the three byte field following the FCB (byte
positions r0 at 33, rl at 34, and r2 at 35). Note that the sequence
of 24 bits is stored with least significant byte first (r0), middle
byte next (rl),, and high byte last (r2). CP/M does not reference byte
r2, except in computing the size of a file (function 35). Byte r2
must be zero, however, since a non-zero value indicates overflow past
the end of file.

Thus, the r0,rl byte pair is treated as a double-byte, or "word"
value, which contains the record to read. This value ranges from 0 to
65535, providing access to any particular record of the 8 megabyte
file. In order to process a file using random access, the base extent
(extent 0) must first be opened. Although the base extent may or may
not contain any allocated data, this ensures that the file is properly
recorded in the directory, and is visible in DIR requests. The
selected record number is then stored into the random record field
(r0,rl), and the BOOS is called to read the record. Upon return from
the call, register A either contains an error code, as listed below,
or the value 00 indicating the operation was successful. In the
latter case, the current DMA address contains the randomly accessed
record. Note that contrary to the sequential read operation, the
record number is not advanced. Thus, subsequent random read
operations continue to read the same record.

Upon each ,random read operation, the logical extent. and -current
record va·lues are automatically set. Thus, the file can be
sequentially read or written, starting from the current randomly
accessed position. Note, however, that in this case, the last
randomly read record will be re-read as you switch from random mode to
sequential read, and the last record will be re-written as you switch
to a sequential write operation. You can, of course~ simply advance
the random record position following each random read or write to
obtain the effect of a sequential I/0 operation.

Error codes returned in register A following a random read are
listed below.

(All Information Contained Herein is Propr~etary to Digital Research.)

25

01 reading unwritten data
02 (not returned in random mode)
03 cannot close current extent
04 seek to unwritten extent
05 (not returned in read mode)
06 seek past physical end of disk

Error code 01 and 04 occur when a random read operation accesses a
data block which has not been previously written, or an extent which
has not been created, which are equivalent conditions. Error 3 does
not normally occur under proper system operation, but can be cleared
by simply re-reading, or re-opening extent zero as long as the disk is
not physically write protected. Error code 06 occurs whenever byte r2
is non-zero under the current 2.0 release. Normally, non-zero return
codes can be treated as missing data, with zero return codes
indicating operation complete.

(All Information Contained Herein is Proprietary to Digital Research.)

26

•

•

*
* FUNCTION 34: WRITE RANDCM

*
*

* *

* Entry Parameters: *
* Register C: 22H *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Return Code *

The Write Random operation is initiated similar to the Read
Random call, except that data is written to the disk from the current
DMA address. Further, if the disk extent or data block which is the
target of the write has not yet been allocated, the allocation is
performed before the write operation continues. As in the Read Random
operation, the random record number is not changed as a result of the
write. The logical extent number and current record positions of the
file control block are set to correspond to the random record which is
being written. Again, sequential read or write operations can
commence following a random write, with the notation that the
currently addressed record is either read or rewritten again as the
sequential operation begins. You can also simply advance the random
record position following each write to get the effect of a sequential
write operation. Note that in particular, reading or writing the last
record of an extent in random mode does not cause an automatic extent
switch as it does in sequential mode.

The error codes returned
random read operation with
indicates that a new extent
overflow.

by a random write are identical to the
the addition of error code 05, which
cannot be created due to directory

(All Information Contained Herein is Proprietary to Digital Research.)

27

* *
* FUNCTION 35: COMPUTE FILE SIZE *
* *
***************************************'
* Entry Parameters: *
* Register C: 23H *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Random Record Field S~t *

When computing the size of a file, the DE register pair
addresses an FCB in random mode format (bytes r0, rl, and r2 are
present). The FCB contains an unambiguous file name which is used in
the directo~y scan. Upon return, the random record bytes contain the
hvirtual" file size which i~, in effect, the record address of the
record following the end of the file. if, following a call to
function 35, the high record byte r2 ts 01, the~ th'e file contains the
~aximum record count 65536. Otherwise, bytes r0 and rl constitute ~
16-bit value (r0 is the lea~t significant byte, as before) which is
the file size. ·

Data can be appended to the end of an existing file by
calling function 35 to set the random record position to the
file, then performing a !j>equence of random write's starting
preset record addr.ess.

simply
end of

at the

•

The virtual size of a file corresponds to the physical size when •
the file is written segµentially. If, instead, the file was created
in random mode and 11 holes 11 exist in the allocation, then the file may
in fact contain fewer records than the size indicates. If, for
example, only the last record of an eight megabyte file is written in
random mode (i.e., record number 65535), then the virtual size is
~5536 records, although only one block of data is actually allocated.

(All Information Contained Herein is Proprietary to Digital Research.)

28

•
. •·

* *
* FUNCTION 36: SET RANDGi RECORD *
* *

* Entry Parameters: *
* Register C: 24H *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Random Record Field Set *

The Set Random Record function causes the
produce the random record position from a file
written sequentially to a particular· point.
useful in two ways.

BOOS to automatically
which has been read or
The function can be

First, it is often necessary to initially read and scan a
sequential file to extract the positions of various "key" fields. As
each key is encountered, function 36 is called to compute the random
record position for the data corresponding to this key. If the data
unit size is 128 bytes, the resulting record position is placed into a
table with the key for later retrieval. After scanning the entire
file and tabularizing the keys and their record numbers, you can move _
instantly to a particular keyed record by performing a random read
using the corresponding random record number which was saved earlier.
The scheme is easily generalized when variable record lengths are
involved since the program need only store the buffer-relative byte
position along with the key and record number in order to find the
exact starting position of the keyed data at a later time.

A second use of function 36 occurs when switching from a
sequential read or write over to random read or write. A file is
sequentially accessed to a particular point in the file, function 36
is called which sets the record number, and subsequent random read and
write operations continue from the selected point in the file.

(All Information Contained Herein is Proprietary to Digital Research.)

29

3. A SAMPLE FILE-TO-FILE COPY PROGRAM.

The program shown below provides a relatively simple example of
fil'e operations. The program source file is created as COPY.ASM using •
the CP/M ED program and then assembled using ASM o·r MAC, resulting in
a "HEX" file. The LOAD program is the used to produce a COPY. COM file
which executes directly under the CCP. The program begins by setting
fhe stack pointer to a local area, and then proceeds to move the
second name from the default area at 006CH to a 33-byte file control
block called DFCB. The DFCB is then prepared for file operations by
clearing the cur rent record field. A't this point, the source and
destination FCB's are ready for processing since the SFCB at 005CH is
properly set-up by the CCP upon entry to the COPY program. ·That is,
the first name is placed into the default fcb, with the proper fields
zeroed, including the current record field at 007CH. The program
continues by opening the source f il·e, deleting any exising dest·ination
file, and then creating the destination file. If· all this is
successful, the program loop~ at the label COPY until each record has
been read from the sour·ce file ahd placed into the destination file.
Upon completion of the data t~ansf·er, the destination file is closed
and the program returns to the CCP command level by jumping to BOOT.

0000 =
0005 =
005c =
005c =
006c =
0080 =
0100 =

0009 =
·000£ =
0010 =
0013 =
0014 =
0015 =
0016 =

0100
0100 3'llb02

·0103 0el0

; sample file-to-file copy program

; at the ccp level, the command . ,
• ,
; . , . , . ,
boot
bdos
fcbl
sfcb
fcb2
dbuff
tpa . ,
printf
openf
closef
deletef
readf
writef
makef . ,

. , . ,

copy a:x.y b:u.v

cppies the file named x.y from drive
a •1rO a f·ile named u.v on drive b •

equ
equ
equ
equ
equ
equ
equ

equ
equ
equ
egu
equ
equ
equ

org
lxi

~000h
0005h
005ch
fcbl
00•6ch

'0080h
0100h

9
15
16
19
20
21
22

; system reboot
; bdos entry point
; first file name
; source fcb
; second file name
; default buffer
; beginning of tpa

; print buffer func#
; open file func#
; close file func#
; delete file func#
; sequential read
; sequential write
f make file func#

tpa ; beginning of tpa
sp,st~ck; local stack

move second file name to d'fcb
mvi c,16 ; half "an fcb

(All Information Contained Herein is Proprietary to Digital Resear.ch.)

30

•

•

•

•

0105 116c00
0108 2lda01
010b la mfcb:
010c 13
010d 77
010e 23
010f 0d
0110 c20b01

0113 af
0114 32fa01

0117 115c00
0 lla cd6 901
0 lld 118701
0120 3c
0121 cc6101

0124 llda01
0127 cd7 301

012a llda01
012d cd8201
0130 119601
0133 3c
0134 cc6101

. ,

;

. ,
0137 115c00 copy:
013a cd7801
013d b7
013e c25101

0141 llda01
0144 cd7d01
0147 lla901
014a b7
014b c46101
014e c33701

0151 llda01
0154 cd6e01
0157 2lbb01
015a 3c
015b cc6101

. , . ,

. ,
eofile:

. ,

lxi
lxi
ldax
inx
mov
inx
dcr
jnz

d, fcb2
h,dfcb
d
d
m,a
h
C
mfcb

; ,source of move
; destination fcb
; source fcb
; ready next
; dest fcb
; ready next
; count 16 ••• 0
; loop 16 times

name has been moved, zero er
xra a ; a= 00h
sta dfcbcr ; current rec= 0

source and destination fcb's ready

lxi
call
lxi
inr
CZ

d,sfcb ; source file
open ; error if 255
d,nofile; ready message
a ; 255 becomes 0
finis ; done if no file

source file open, prep destination
lxi d,dfcb ; destination
call delete ; remove if present

lxi
call
lxi
inr
CZ

d,dfcb
make
d,nodir;

; destination
; create the file

ready message
; 255 becomes 0 a

finis ; done if no dir space

source file open, dest file open
copy until end of file on source

lxi
call
ora
jnz

not end
lxi
call
lxi
ora
cnz
jmp

d,sfcb ; source
read ; read next record
a ; end of file?
eofile ; skip write if so

of file, write the record
d,dfcb ; destination
write ; write record
d,space; ready message
a ; 00 if write ok
finis ; end if so
copy ; loop until eof

; end
lxi
call
lxi
inr
CZ

of file, close destination
d,dfcb ; destination
close ; 255 if error
h,wrprot; ready message
a ; 255 becomes 00
finis ; shouldn't happen

; copy operation complete, end

(All Information Contained Herein is Proprietary to Digital ~esearch.)

31

015e llcc01

0161 0e09
0163 cd0 500
0166 c30000

;
finis:

. , . ,
0169 0e0f open:
016b c30500

;
016e 0el0 close:
0170 c30500 . ,

lxi

; write
mvi
call
jmp

d,normal; ready message

message given by de, reboot
c,printf
bdos ; write message
boot ; reboot system

system interface subroutines
(all return directly from bdos)

mvi
jmp

mvi
jmp

c,openf
bdos

c,closef
bdos

0173 0el3 delete: mvi
0175 c30500 jmp

c,deletef
bdos . ,

0 1 7 8 0 e 14 re ad :
017a c30500 . ,
017d 0el5 write:
0 l 7f c30500

;
0182 0el6 make:
0184 c30500

; . ,
0187 6e6f20fnofile:
0196 6e6f209nodir:
0la9 6f7574fspace:
0lbb 7772695wrprot:
01cc 636f700norrnal: . ,

mvi
jmp

mvi
jmp

mvi
jmp

console
db
db
db
db
db

c, readf
bdos

c,writef
bdos

c,makef
bdos

messages
'no source file$'
'no directory space$'
'out of data space$'
'write protected?$'
'copy complete$'

; data areas
0lda
0lfa =

0lfb

021b

dfcb: ds 33 ; destination fcb
dfcbcr equ dfcb+32; current record . ,
stack:

ds

end

32 ; 16 level stack

\,

Note that there are several simplifications in this particular
program. First, there are no checks for invalid file names which
could, for example, contain ambiguous references~ This situation
could be detected by scanning the 32 byte default area starting at
location 005CH for ASCII question marks. A check should also be made
to ensure that the file names have, in fact, been included (check
locations 005DH and 006D8 for non-blank ASCII characters). Finally, a
check should be made to ensure that the source and destination file
names are different. A speed improvement could be made by buffering
more data on each read operation. One could, for example, determine

(All Information Contained Herein is Proprietary to Digital Research.)

32

•

the size of memory by fetching FBASE from location 0006H and use the
entire remaining portion of memory for a data buffer. In this case,
the programmer simply resets the DMA address to the next successive
128 byte area before each read. Upon writing to the destination file,
the DMA address is reset to the beginning of the buffer and
incremented by 128 bytes to the end as each record is transferred to
the destination file.

(All Information Contained Herein is Proprietary to Digital Research.)

33

4. A SAMPLE FILE DUMP UTILITY.

The file dump program shown below is slightly more complex than
the simple copy program given in the previous section. The dump •
program reads an input file, specified in the CCP command line, and
displays the content of each record in hexadecimal format at the
console. Note that the dump program saves' the CCP 's stack· upon entry,
resets the stack to a local area, and restores the CCP's stack before
returning directly to the CCP. Thus, the dump program does not
perform and warm start at the end of processing.

0100
0005 =
0001 =
0002 =
0009 =
000b =
000f =
0014 =

005c =
0080 =

000d =

000a =

005c =
005d =
0065 =
0068 =
006b =
007c =
007d =

0100 210000
0103 39

0104 221502

0107 315702

010a cdcl01
010d feff
010f c2lb01

0112 llf301
0115 cd9c01
0118 c35101

; DUMP program reads input file and displays hex data

bdos
cons
typef
printf
brkf
openf
readf . ,
fcb
buff . ,
;
er
lf

fcbdn
fcbfn
fcbft
fcbrl
fcbrc
fcbcr
fcbln . , . ,

;

;

;

org
egu
egu
equ
equ
equ
equ
equ

egu
egu

100h
0005h
1
2
9
11
15
20

Sch
80h

;dos entry point
; read console
;type function
;buffer print entry
;break key function {true if char
;file open
;read function

;file control block address
;input disk buffer address

non graphic characters
equ 0dh ;carriage return
equ 0ah ;line feed

file
egu
equ
equ
equ
equ
equ·
equ

control block definitions
fcb+0 ;disk name
fcb+l ;file name
fcb+9 ;disk file type (3 characters)
fcb+l2 ;file's current reel nu~ber
fcb+l5 ;file's record count (0 to 128)
fcb+32 ;current {next) record number (0
fcb+33 ;fcb length

set up stack
·1xi h,0
dad sp
entry stack pointer in hl from the ccp
shld oldsp
set sp to local stack area {restored at finis)
lxi sp,stktop
read and print successive buffers
call setup ;set up input file
cpi 255 ;255 if file not present
jnz openok ;skip if open is ok

file not there, give error message and return
lxi
call
jmp

d,opnmsg
err
finis ;to return

{All Infbrmation Contained Herein is Proprietary to Digita~ ~esearch.)

34

•

•

011b 3e80
011d 321302

0120 210000

0123 es
0124 cda201
0127 el
0128 da5101
012b 4 7

012c 7d
012d e60f
012f c24401

0132 cd7201

0135 cd5901

0138 0f
0139 da5101

openok:

.
I

;
gloop:

.
I

.
I .
I

.
I

;

;open operation ok, set buffer index to end
mvi a,80h
sta ibp
hl contains
lxi h,0

;set buffer pointer to 80h
next address to print

push
call
pop
jc
mov
print
check
mov
ani
jnz
print
call

h
gnb
h
finis
b,a

;start with 0000

;save line position

;recall line position
;carry set by gnb if end file

hex values
for line fold

a,1
0fh ;check low 4 bits
nonum

1 ine number
crlf

check for break key
call break
accum lsb = 1 if character ready
rrc ;into carry
jc finis ;don't print any more

013c 7c mov a,h
phex
a,l
phex

013d cd8f01 call
0140 7d mov
0141 cd8f01 call

0144 23
0145 3e20
0147 cd6501
014a 78
014b cd8f01
014e c32301

0151 cd7 201
0154 2a1502
0157 f9

0158 C9

0159 e5d5c5
015c 0e0b
015e cd0500
0161 cldlel

nonum:

.
I

finis: .
I

.
I

. ,

inx
mvi
call
mov
call
jmp

end of
(note
call
lhld
sphl
stack
ret

h
a I I I

pchar
a,b
phex
gloop

;to next line number

dump, return to ccp
that a jmp to 0000h reboots)

crlf
oldsp

pointer contains ccp's stack location
; to the ccp

; subroutines .
I

break: ;check break key (actually any key will do)
push h! push d! push b; environment saved
mvi c,brkf
call, bdos
pop b! pop d! pop h; environment restored

(All Information Contained Herein is Proprietary to Digital Research • .) . ,

35

0164 c9

0165 e5d5c5
0168 0e02
016a Sf
016b cd0500
016e cldlel
01 71 c9

0172 3e0d
0174 cd6501
0177 3e0a
0179 cd6501
017c c9

017d e60f
017f fe0a
0181 d28901

0184 c630
0186 c38b01

.
' pchar:

.
' er lf:

pnib:

.
'

.
' ;

0189 c637 pl0:
018b cd6501 prn:
018e c9

018f f5
019 0 0 f
0191 0f
0192 0f
0193 0f
0194 cd7d01
0197 f 1
0198 cd7d01
019b c9

019c 0e09
019e cd0500
0 lal c9

0 la2 3al302
0la5 fe80
0la7 c2b301

;
phex:

err:

; .
' gnb:

;

ret

;print a character
push h! push d! push b; saved
mvi c,typef

e,a
bdos

mov
call
pop b!
ret

pop d! pop h; restored

mvi
call
mvi
call
ret

a,cr
pchar
a,lf
pchar

in reg a ;print
ani
cpi
jnc
less
adi
jmp

nibble
0fh
10
pl0

;low 4 bits

than or
'0'
prn

equal to 9

greater or equal to 10
adi 'a' - 10
call pchar
ret

;print hex char in reg a
push psw
rrc
rrc
rrc
rrc
call
pop
call
ret

pnib
psw
pnib

;print nibble

;print error message
d,e addresses message
mvi c,printf
call bdos
ret

;get
lda
cpi
jnz
read

next byte
ibp
80h
g0

another buffer

ending with"$,;
;print buffer function

(All Information Contained Herein is Proprietary to Digital Research.)

36

0 laa cdce01
0 lad b7
0lae cab301

0lbl 3 7
0lb2 c9

0lb3 Sf
0lb4 1600
0lb6 3c
0lb7 321302

0lba 218000
0lbd 19

0lbe 7e

0 lbf b7
0 lc0 c9

.
I

.
I

g0:

.
I

;

call
ora
jz
end
stc
ret

diskr
a ;zero value if read ok
g0 ;for another byte

of data, return with carry set for eof

;read the byte at buff+reg a
mov e,a ;ls byte of buffer index
mvi d,0 ;double precision index to de
inr a ;index=index+l
sta ibp ;back to memory
pointer is incremented
save the current file address
lxi h,buff
dad d
absolute character address is in hl
mov a,m
byte is in the accumulator
ora a ;reset carry bit
ret

setup: ; set up file
; open the file for input

0lcl af xra a ; zero to accum
0lc2 327c00 sta fcbcr ;clear current record

0lc5 115c00
0 lc8 0e0f
0lca cd0500

0lcd c9

0lce e5d5c5
0 ldl 115c00
0ld4 0el4
0ld6 cd0500
0ld9 cldlel
0 ldc c9

;

;
diskr:

.
I

lxi
mvi
call
255
ret

d,fcb
c,openf
bdos

in accum if open error

;read disk file record
push h! push d! push b
lxi d,fcb
mvi c ,, r .eadf
call bdos
pop b! pop d! pop h
ret

; fixed message area
0ldd 46494c0signon: db 'file dump version 2.0$'
0lf3 0d0a4e0opnmsg: db cr,lf,'no input file present on disk$'

0213
0215

0217

0257

;
ibp:
oldsp: .
I

;

stktop:

variable area
ds 2
ds 2

stack area
ds 64

end

;input buffer pointer
;entry sp value from ccp

;reserve 32 level stack

(All Information Contained Herein is Proprietary to Digital Research.)

37

5. A SAMPLE RANDCM ACCESS PROGRAM.

This manual is concluded with a rather extensive, but complete
example of random access operation. The program listed below performs
tfhe simhple fun?ti

1
on of r~ading or writing random records upon command •

rom t e termina. Given that the program has been created,
assanbled, and placed into a file·labelled RANDOM.COM, the CCP level
command:

RANDCM X .DAT

starts the test program. The pr9gram looks for a file by
x.DAT (in this particular case) and, if found, proceeds to
console for input. If not found, the file is created
prompt is given. Each prompt takes the form

next command?

the name
prompt .the

before the

and is followed by operator input, terminated by a carriage return.
The· input commands take the form

nw nR Q

where n is an integer value in the range 0 to 65535, and W, R, and Q
are simple command characters corresponding to random write, random
read, and quit processing, respectively. If thew command is issued,
the RANDCM program issues the prompt

type data:

The op~rator then responds by typi~g up to 127 character~, fo~lowed by •
a carriage return. RANDCM then writes the charactec string into the
X.DAT f~le at record n. If the R command is issued, RANDOM reads
record number n and displays the string valu.e at the console. If the
Q command is i•ssued, the X.DAT file is closed, and the program returns
to the console command processor. .In the interest of brevity, th.e
only error message is

error, try again

The program begins with an initialization section where the
input file is opened or created, followed by a continuous loop at the
label 11 ready 11 where the individual commands are interpreted. The
default file control block at 005CH and the default buffer at 0080H
are used in all disk operations. The utility subroutines then follow,
which contain the principal input line processor, called 11 rea~c. 11

This particular program shows the elements of random access
processing, and can be used as the basis for further program
development.

(All Information Contained Herein is Proprietary to Digital Research.)

38

0100

0000 =
0005 =

0001 =
0002 =
0009 =
000a =
000c =
000f =
0010 =
0016 =
0021 =
0022 =

005c =
007d =
007f =
0080 =

000d =
000a =

0100 3lbc0

0103 0e0c
0105 cd050
0108 fe20
010a d2160

010d lllb0
0110 cdda0
0113 c3000

0116 0e0f
0118 115c0
011b cd050
0lle 3c
0llf c2370

·*** ,
• * ,
;* sample random access program for cp/m 2.0
. * ,

*
*
*

·*** ,

. ,
reboot
bdos

coninp
conout
pstring
rs tr ing.
version
openf
closef
makef
readr
writer . ,
fcb
ranrec
ranovf
buff
;
er
lf . ,

org

equ
equ

equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

equ
equ
equ
equ

equ
equ

100h

0000h
0005h

1
2
9
10
12
15
16
22
33
34

005ch
fcb+33
fcb+35
0080h

0dh
0ah

;base of tpa

; system reboot
;bdos entry point

;console input function
;console output function
;print string until '$'
;read console buffer
;return version number
;file open function
;close function
;make file function
;read random
; write rand om

· ;default file control block
;random record position
;high order (overflow) byte
;buffer address

; ca r r i age r et ur n
;line feed

·*** ,
·* * ,
;* load SP, set-up file for random access *
·* * ,
·*** ,

lxi sp,stack . , . version 2.0? ,
mvi c,version
call bdos
cpi 20h ;version 2.0 or better?
jnc versok

; bad version, message and go back
lxi d,badver
call print
jmp reboot

;
versok: . correct version for random access I

mvi c,openf ; open default fcb
lxi d,fcb
call bdos
inr a ;err 255 becomes zero
jnz ready . ,
cannot open file, so create it

(All Information Contained Herein is Proprietary to Digital Research.)

39

0122 0el6
0124 115c0
0127 cd050
012a 3c
012b c23 70

012e 113a0
0131 cdda0
0134 C3000

0137 cde50
013a 227d0
013d 217f0
0140 3600
0142 fe51
0144 c2560

0147 0el0
0149 115c0
014c cd050
014f 3c
0150 cab90
0153 c3000

0156 fe57
0158 c2890

015b 114d0
015e cdda0
0161 0e7f
0163 21800

0166 cs
0167 es
0168 cdc20
016b el

mvi
lxi
call
inr
jnz

; . cannot I

lxi
call
jmp . ,

c,makef
d,fcb
bdos
a
ready

;err 255 becomes zero

create file, directory full
d,nospace
print
reboot ;back to ccp

·*** ,
·* * ,
; * i'oop back to 11 ready" after each command *
·* * ,
·*** , . ,
ready:
; file is ready for processing
;

call read com ;read next command
shld ranrec ;store input recordf
lxi h, ranovf
mvi m, 0 ;clear high byte if set
cpi 'Q' ;quit?
jnz notq . ,

; quit processing, close file
mvi c,closef
lxi d,fcb
call bdos
inr a ;err 255 becomes 0
jz error ;error message, retry
jmp reboot ;back to ccp . , .

·*** , '

·* * ,
;* end of quit command, process write
• * *

*
, '
·*** , .

notq:

; . ,

r loop:

not the quit command, random write?
cpi •w•
jnz notw

a random write, fill buffer until er
d,datmsg

this is
lxi
call ' pr int ; data prompt ,
mv1
lxi
; read
pu'sh
push
call
pop

c,127 ;up to 127 ch~racters
h,buff ;destination

next character to buff
b ; save counter
h ;next destination
getchr ;character to a
h ;restore counter

{All Information Contatned Herein is Proprietary to Digital Research.)

40

•

•

•

016c cl
016d fe0d
016f ca780

0172 77
0173 23
0174 0d
0175 c2660

0178 3600

017a 0e22
017c 115c0
017f cd050
0182 b7
0183 c2b90
0186 c3370

0189 fe52
018b c2b90

018e 0e21
0190 115c0
0193 cd050
0196 b7
0197 c2b90

019a cdcf0
019d 0e80
019f 21800

0la2 7e
0la3 23
0la4 e67f
0la6 ca370
0la9 c5
0laa e5
0lab fe20
0lad d4c80
0lb0 el
0lbl cl
0lb2 0d
0lb3 c2a20
0lb6 c3370

pop b ;restore next to fill
cpi er ;end of line?
jz er loop . not end, store character ,
mov m,a
inx h ;next to fill
dcr C ;counter goes down
jnz rloop ;end of buffer?

er loop: . end of read loop, store 00 ,
mvi m,0

;
; write the record to selected record number

mvi c,writer
lxi d,fcb
call bdos
ora a ;error code zero?
jnz error ; message if not
jmp ready ;for another record . ,

;***
. * ,
;* end of write command, process read
• * ,

*
*
*

·*** ,
notw:
; not a write command, read record?

cpi 'R'
jnz error ;skip if not . ,

; read random record
mvi c, readr
lxi d,fcb
call bdos
ora a ; return code 00?
jnz error .

' . read was successful, write to console ,
call crlf ;new line
mvi c,128 ;max 128 characters
lxi h,buff ;next to get

wloop:
mov a,m ;next character
inx h ;next to get
ani 7fh ;mask parity
jz ready ;for another com~and if 00
push b ;save counter
push h ;save next to get
cpi I I ; graphic?
enc putchr ;skip output if not
pop h
pop b
dcr C ; count=count-1
jnz wloop
jmp ready

(All Information Contained Herein is Proprietary to Digital Research.)

41

0lb9 11590
0 lbc cdda0
0lbf C3370

0 lc2 0e0 l
0lc4 cd050
0lc7 c9

0 lc8 0e0 2
0lca Sf
0lcb cd050
0lce c9

0lcf 3e0d
0ldl cdc80
0 ld4 3e0a
0ld6 cdc80
0 ld9 c9

0 lda as
0 ldb cdcf 0
0 lde dl
0ldf 0e09
0lel cd050
0le4 c9

0le5 116b0
0 le8 cdda0
0leb 0e0a
0led 117a0
0lf0 cd050

. ,
;***
. * , *
;* end of read command, all errors end-up here *
·* * ,
·*** , ' . ,
error:

. ,

lxi
call
jmp

d,errmsg
print
ready

;***
• * ·* ,
;* utility subroutines for console i/o *
·* * ,
·*** ,
getchr:

putchr:

. ,
crlf:

;
pr int:

;
read com:

;

;read next console character to a
mvi c,coninp
call bdos
ret

;write character from a to console
mvi c,conout
mov e,a ;character to send
call bdos ;send character
ret

;send carri~ge return line feed
mvi a,cr ;carriage return
call putchr
mvi a,lf ;line feed
call putchr
ret

;print
push
call
pop
mvi
call
ret

; read
lxi
call
mvi

the buffer addressed by de until$
d
crlf
d ;new line
c,pstring
bdos ;print the string

the next command line to the conbuf
d,prompt

lxi
call
command

print ;command?
c,·rstring
d~conbuf
bdos ;read command line
line is present, scan it

... .,. I'

(All Information Contained Herein is Proprietary to Digital Research.)

42

•

•
0lf3 21,000
0lf6 ll 7c0

h,0 ;start with 0000
d,conlin;command line

0lf9 la readc:

lxi
lxi
ldax
inx
ora

d ;next command character
0lfa 13
0 lfb b7
0lfc c8

0lfd d630
0lff fe0a
0201 d2130

0204 29
0205 4d
0206 44
0 207 29
0208 29
0209 09
0 20a 85
0 20b 6f
020c d2f90
020f 24
021,0 C3f90

0213 C630
0·215 fe61
0 217 dB

0218 e65f
0 21a c9

;

endrd: .
I

.
I

d ;to next command position
a ;cannot be ehd of command

rz
not zero, numeric?
sui • 0 •
cpi 10 ;carry if numeric
jnc endrd
add-in next digit
dad h ;*2
mov
mov
dad
dad
dad
add
mov
jnc
inr
jmp.

c,l
b,h
h
h
b
1
l,a
readc
h
readc

;be= value* 2
;*4
;*8
;*2 + *8 = *10
;+digit

;for another char
;overflow
;for another char

end of read, restore value in a
adi • 0 • ; command
cpi •a• ; translate case?
re
lower case, mask lower case bits
ani 101$llllb
ret

·********************~****************************** I

·* * I

;* string data area for console messages *
·-* * I

·*** I

badver:
021b 536f79 db 'sorry, you need cp/m version 2$ 1

nospace:
023a 4e6f29 db

da bnsg:
024d 547970 db

er rmsg:
0259 457272 db

prompt:
026b 4e6570 db

'no directory space$'

'type data: $'

'error, try again.$'

'next command? $ 1

(All Information Contained Herein is Proprietary to Digital Research.)

43

027a 21
027b
027c
0021 =

029c

02bc

;***
·* * I

;* fixed and variable data area
·* I

*
*

;***
conbuf: db conlen ;length of console buffer
consiz: ds 1 ;resulting size after read
conlin: ds 32 ;length 32 buffer
conlen equ $-consiz

stack:
ds

end

32 ; 16 level stack

Again, major improvements could be made to this particular
program to enhance its operation. In fact, with some work, this
program could evolve into a simple data base management system. One
could, for example, assume a standard record size of 128 bytes,
consisting of arbitrary fields within the record. A program, called
GETKEY, could be developed which first reads a sequential file and
extracts a specific field defined by the operator. For example, the
command

GETKEY NAMES.DAT LASTNAME 10 20

would cause GETKEY to read the data base file NAMES.DAT and extract
the 11 LASTNAME 11 field from each record, starting at position 10 and
ending at character 20. GETKEY builds a table in memory consisting of •
each particular LASTNAME field, along with its 16-bit record number
location within the file. The GETKEY program then sorts this list,
and writes a new file, called LASTNAME.KEY, which is an alphabetical
list of LASTNAME fields with their corresponding record numbers.
(This list is called an "inverted index" in information retrieval
parlance.}

Rename the program shown above as QUERY, and massage it a bit so
that it reads a sorted key file into memory. The command line might
appear as:

QUERY NAMES.DAT LASTNAME.KEY

Instead of reading a number, the QUERY program reads an alphanumeric
string which is a particular key to find in the NAMES.DAT data base.
Since the LASTNAME.KEY list is sorted, you can find a particular entry
quite rapidly by performing a "binary search, 11 similar to looking up a
name in the telephone book. That is, starting at both ends of the
list, you examine the entry halfway in between and, if not matched,
split either the upper half or the lower half for the next search.
You'll quickly reach the item you're looking for (in log2(n} steps}
where you'll find the corresponding record number. Fetch and display
this record at the console, just as we have done in the program shown
above.

(All Information Contained Herein is Proprietary to Digital Research.)

44

•

At this point you're just getting started. With a little more
work, you can all<M a fixed grouping size which differs from the 128
byte record shown above. This is accomplished by keeping track of the
record number as well as the byte offset within the record. Knowing
the group size, you randanly access the record containing the proper
group, offset to the beginning of the group within the record read
sequentially until the group size has been exhausted.

Finally, ·you can improve QUERY considerably by allowing boolean
expressions which compute the set of records which satisfy several
relationships, such as a LASTNAME between HARDY and LAUREL, and an AGE
less than 45. Display all the records which fit this description.
Finally, if your lists are getting too big to fit into memory,
randanly access your key files from the disk as well. One note of
consolation after all this work: if you make it through the project,
you'll have no more need for this manual!

(All Information Contained Herein is Proprietary to Digital Research.)

45

6. SYSTEM FUNCTION SUMMARY.

FUNC FUNCTION NAME INPUT PARAMETERS OUTPUT RESULTS

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

System Reset
Console Input
Console Output
Reader Input
Punch Output
List Output
Direct Console I/O
Get I/O Byte
Set I/O Byte
Pr int String
Read Console Buffer
Get Console Status
Return Version Number
Reset Disk System
Select Disk
Open File
Close File
Search for First
Search for Next
Delete File
Read Sequential
Write Sequential
Make File
Rename File
Return Login Vector
Return Current Disk
Set DMA Address
Get Addr (Alloc)
Write Protect Disk
Get R/O Vector
Set File Attributes
Get Addr(disk parms)
Set/Get User Code
Read Random
Write Random
Compute File Size
Set Randan Record

none
none
E = char
none
E = char
E = char
see def
none
E = IOBYTE
DE= .Buffer
DE = • Buffer
none
none
none
E = Disk Number
DE= .FCB
DE= .FCB
DE= .FCB
none
DE= .FCB
DE= .FCB
DE= .FCB
DE= .FCB
DE= .FCB
none
none
DE= .DMA
none
none
none
DE= .FCB
none
see def
DE= .FCB
DE= .FCB
DE= .FCB
DE= .FCB

* Note that A= L, and B = H upon return

none
A= char
none
A= char
none
none
see def
A= IOBYTE
none
none
see def
A= 00/FF
HL= version*
see def
see def
A= Dir Code
A= Dir Code
A= Dir Code
A= Dir Code
A= Dir Code
A= Err Code
A= Err Code
A= Dir Code
A= Dir Code
HL= Login Vect*
A= Cur Disk#
none
HL= .Alloc
see def
HL= R/O Vect*
see def
HL= .DPB
see def
A= Err Code
A= Err Code
r0, rl, r2
r0, rl, r2

(All Information Contained Herein is Proprietary to Digital Research.)

46

•

•

~ ... -

Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M 2.0 USER'S GUIDE

FOR CP/M 1.4 OWNERS

COPYRIGHT (c) 1979

DIGITAL RESEARCH .

Copyright

Copyright (c) 1979 by Digital Research. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into
any language or computer language, in any form or by any
means, electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written permission of
Digital Research, Post Office Box 579, Pacific Grove,
California 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any parti
cular purpose. Further, Digital Research reserves the right
to revise this publication and to make changes from time to
time in the content hereof without obligation of Digital
Research to notify any person of such revision or changes.

Trademarks

CP/M is a registered trademark of Digital Research. MP/M,
MAC, and SID are trademarks of Digital Research.

, b

CP/M 2.0 USER'S GUIDE FOR CP/M 1.4 OWNERS

1.

2.

3 •

4.

s.

6.

Copyright (c) 1979
Digital Research, Box 579
Pacific Grove, California

An overview of CP/M 2.0 Facilities

User Interface

Console Command Processor (CC?) Intertace

s·.rA·r enhancements

PIP Bnhancements

8D Enhancements

7. The XS09 Function

8.

9.

3DOS Interface Conventions. . . .

CP/M 2.0 Memory Organization ••

10. 3IOS Differences •.•.•••

• l

. . 3

• • • 4

,. ~

d

. • . 10

. 11

• • • • l 2

• • • 2 7

• 28

f •

•

l

•
I. AN OV'E RVI EW OF CP /M 2. 0 FACILI ·rIES.

CP/M 2.0 is a high-performance single-console operating system
which uses table driven techniques to allow field reconfiguration to
match a wide variety of disk capacities. All of the fundamental file
restrictions are removed, while maintaining upward compatibility from
previous versions of release 1. Features of CP/~ 2.0 include field
specification of one to sixteen logical drives, eacn containing up to
eight megabytes. Any particular file can reach the full drive size
with the capability to expand to thirty-two megabytes in future
releases. The directory size can be field configured to contain any
reasonable numoer of entries, and each file is optionally tagged with
read/only and system attributes. Users of CP/M 2.0 are physically
separated oy user numbers, with facilities for file copy operations
from one user area to another. ~owerful relative-record random access
functions are present in CP/M 2.0 wh1ch provide direct access to any
of the 65536 records of an eight megabyte file.

All disk-dependent portions of CP/M 2.0 are placed into a
BIOS-resident "disk parameter block" which is either hand coded or
~reduced automatically using the disk definition macro library
provided with CP/M 2.0. The end user need only specify the maximum
number of active disks, the starting and ending sector numbers, the
data allocation size, the ~aximum extent of the logical disk,
directory size information, and reserved track values. The macros use
this information to generate the appropriate tables and table
references for use during CP/M 2.0 operation. Deblocking information
is also provided wnich aids in assembly or disassembly of sector sizes
which are multiples of tne fundamental 128 byte data unit, and the
system alteration manual includes general-purpose subroutines which
use the this deblocking information to take advantage of larger sector
sizes. Use of these subroutines, together with the table driven data
access algoritnms, make CP/M 2.0 truly a universal data management
system.

File expansion is achieved by providing up to 512 logical file
extents, where each logical extent contains 16K bytes of data. CP/M
2.0 is structured, however, so that as much as 128K bytes of data is
addressed by a single physical extent (corresponding to a single
directory entry), tnus maintaining compatibility with previous
versions while taking full advantage of directory space.

Random access facilities are present in CP/M 2.0 which allow
immediate reference to any record of an eight ~egabyte file. Using
CP/M's unique data organization, data blocks are only allocated when
actually required and movement to a record position requires little
search time. Sequential file access is upward com?atible from earlier
versions to the full .eight megabytes, while random access
compatibility stops at 512K byte files. Due to CP/M 2.0's simpler and
faster random access, application orogrammers are encouraged to alter
their programs to take full advantage of the 2.0 facilities.

Several CP/M 2.0 modules and utilities have improvements which
correspond to the enhanced file system. STA'r and PIP both account for
file attributes and user areas, while the CCf> provides a "login''

(All Information Contained Herein is Proprietary to Digital Research.)

l

function to change from one user area to anotner. ~he CCP also
formats directory displays in a more convenient manner and accounts
for both CRT and hard-copy devices in its enhanced line editing
functions.

The sections below point out the individual differences between
CP/M 1.4 and CP/M 2.0~ with the understanding that the reader is
either familiar with CP/M 1.4, or has access to the 1.4 manuals.
Additional information dealing with CP/M 2.0 I/0 system alteration is
presented in the Digital Research manual "CP/M 2.0 Alteration Guide."

(All Information Contained Herein is Proprietary to Digital Research.)

2

•

•
2. USER INTERFACE.

Console line processing takes CRT-type devices
three new control characters, shown with an asterisk
(the symbol "ctl" below indicates that the
simultaneously depressed):

into account with
in the list below
control key is

rub/del
ctl-C
ctl-E
ctl-H
ctl-J
ctl-M
ctl-R
c tl-u
ctl-X

removes and echoes last character
reboot when at beginning of line
physical end of line
oackspace one cnaracter position*
(line feed) terminates current input*
(carriage return) terminates input
retype current line after new line
remove current line after new line
backspace to beginning of current line*

In ?articular, note that ctl-H produces the proper backspace overwrite
function (ctl-H can be changed internally to another character, such
as delete, through a simple single byte change). Further, the line
aditor keeps track of the current prompt column position so that the
operator can properly align data input following a ctl-U, ctl-R, or
ctl-X command.

(All Information Contained Herein is Proprietary to Digital Research.)

3

3. CONSOLE COMM.Al.~D PROCESSOR (CCP) IN'rERFACE.

There are four functional differences between CP/M 1.4 and CP/M
2.0 at the console command processor (CCP) level. The CCP now
displays directory information across the screen (four elements per 9
line), the USER command is present to allow maintenance of separate
files in the same directory, and the actions of the "ERA *.*" and
"SAVE" commands have changed. The altered DIR format is
self-explanatory, while the USER command takes the for~:

USER n

where n is an integer value in the range 0 to 15. Upon cold start,
the operator is automatically "logged" into user area number 0, which
is compatible with standard CP/M 1.4 directories. The operator may
issue the USER command at any time to move to another logical area
within the same directory. Drives which are logged-in while
addressing one user number are automatically active when the operator
moves to another user number since a user number is simply a prefix
which accesses particular directory entries on the active disks.

The active
subsequent USER
is again assumed.

user number is maintained until changed by a
command, or until a cold start operation when user 0

Due to the fact that user numbers now tag individual directory
entries, the ERA*.* command has a different effect. In version 1.4,
this command can be used to erase a directory whicn has "garbage"
information, perhaps resulting from use of a ' disKette under another
operating system (heaven forbid!). In 2.0, however, the ERA *.*
command affects only the current user number. Thus, it is necessary
to write a simple utility to erase a nonsense disk (the program simply
writes the hexadecimal pattern E5 throughout the disk).

The SAVE command in version 1.4 allows only a single memory save
operation, with the potential of destroying the memory image due to
directory operations following extent boundary changes. Version 2.0,
nowever, does not perform directory operations in user data areas
after disk writes, and thus the SAVE operation can be used any number
of times without altering the memory image.

(All Information Contained Herein is Proprietary to Digital Research.)

4

4. STAT ENHANCEMENTS.

The STAT program has a number of additional functions which
allow disk parameter display, user number display, and file indicator
manipulation. The command:

STA·r VAL:

produces a summary of the available status commands, resulting in the
output:

·remp R/O Disk:
Set Indicator:
Disk Status
Oser Status
Iobyte Assign:

d: =R/O
d:filename.typ
OSK: d :DSK:
USR:

(list of possible assignments)

$R/O $R/w $SYS $DIR

whicn gives an instant summary of the possible STAT commands. The
command form:

where .. a: .. is
unambiguous or
format:

Size
48
55

65536

STAT d:filename.typ ~s

an optional drive name, and "filename.typ"
ambiguous file name, produces the output

Recs Bytes Ext Ace
48 6k 1 R/0 A :'ED. COM
55 121< 1 R/0 (A:PIP.COM)

128 2k 2 R/w A :X .DA'l'

is an
display

where tne $S parameter causes the "Size" field to be dis-played
(without the $S, the Size field is skipped, but the remaining fields
are displayed). •rhe Size field lists the virtual file size in
records, while the "Recs" field sums the number of virtual records in
each e xtent. For files constructed sequentially, the Size and Recs
fields are identical. The dBytesd field lists the actual number of
bytes allocated to the corresponding file. The minimum allocation
unit is determined at configuration time, and thus the number of bytes
corresponds to the record count plus the remaining unused space in the
last allocated block for sequential files. Random access files are
given data areas only when written, so the Bytes field contains the
only accurate allocation figure. In the case of random access, the
Size field gives the logical end-of-file record position and the Recs
field counts the logical records of each extent (each of these
extents, however, ~ay contain unallocated "holes" even though they are
added into the record count). The "Ext" field counts the number of
logical 16K extents allocated to the file. Unlike version 1.4, the
Ext count does not necessarily correspond to the number of directory
entries given to the file, since there can be up to 128K bytes (8
logical extents) directly addressed by a single directory entry,
depending upon allocation size (in a special case, there are actually
256K bytes which can be directly addressed by a physical extent).

'rhe "Ace"
changed using

field gives the R/O or R/W
the commands shown below.

access mode, which is
Similarly, the parentheses

(All Intormation Contained Herein is Proprietary to Digital Research.)

5

shown around the PIP.COM file name indicate that it has the ·•system"
indicator set, so that it will not be listed in DIR commands. The
four command forms

STAT d:filename.typ $R/O
STAT d:filenarne.typ $R/ri
STAT d:filename.typ $SYS
STAT d:filename.typ $DIR

set or reset various permanent file indicators. The R/0 indicator
places the file (or set of files) in a read-only status until changed
by a subsequent STAT command. The R/0 status is recorded in the
directory with tne file so that it remains R/0 through intervening
cold start operations. The R/W indicator places the file in a
permanent read/write status. The SYS indicator attaches the system
indicator to the file, while the DIR command removes the system
indicator. 'rhe "filename.typ'' may be ambiguous or unambiguous, but in
either case, the files whose attributes are changed are listed at the
console when the change occurs. The drive name denotea by "d:" is
optional.

When a file is marked R/0, subsequent attempts to erase or write
into the file result in a terminal BOOS message

Bdos Err on d: File R/0

·rhe BOOS then waits for a console input before performing a subsequent
warm start (a "return·· is sufficient to continue). The command form

s·rAT d :OSK:

lists the drive characteristics of the disk named by "d:" which is in
tne range A:, B:, ••. , P:. The drive characteristics are listed in
the format:

d: Drive Characteristics
65536: 128 Byte record Capacity

8192: Kilobyte Drive Capacity
128: 32 Byte Directory Entries

0: Checked Directory Entries
1024: Records/ Extent

128: Records/ Block
58: Sectors/ Track

2: Reserved Tracks

where "d:" is the selected drive, followed by the total record
capacity (65536 is an 8 megabyte drive), followed by the total
capacity listed in Kilobytes. The directory size is listed next,
followed by the "checked" entries. The number of checked entries is
usually identical to the directory size for removable media, since
this mechanism is used to detect changed media during CP/M operation
witnout an intervening warm start. For fixed media, the number is
usually zero, since the media is not changed without at least a cold
or warm start. The number of records per extent determines the
addressing capacity of each directory entry (1024 times 128 bytes, or

(All Information Contained Herein is Proprietary to Digital Research.)

6

•
128K in the example above). ·rhe number of records per block shows the
basic allocation size (in the example, 128 records/block times 128
bytes per record, or 16K bytes per block). The listing is then
followed by the number of physical sectors oer track and the number of
reserved tracks. For logical drives which share the same physical
disk, the number of reserved tracks may be quite large, since this
mechanism is used to skip lower-numbered disk areas allocated to other
logical disks. The command form

STAT DSK:

produces a drive characteristics taole for all currently active
drives. The final STAT command form is

STAT USR:

which produces a list of the user numbers which have files on the
currently addressed disk. The display format is:

Active User : 0
Active Files: 0 1 3

where the first line lists the currently addressed user number, as set
by the last CCP USER command, followed by a list of user numbers
scanned from the current directory. In the above case, the active
user number is 0 (default at cold start), witn three user numbers
which have active files on the current disk. ·rhe operator can
subsequently examine the directories of the other user numbers by
logging-in with USER 1, USER 2, or USER 3 commands, followed by a DIR
command at the CCP level.

(All Information Contained Herein is Proprietary to Digital Research.)

7

5. PIP ENHANCEMENTS.

PIP provides three new functions which account for the features
of CP/M 2.0. All three functions take the form of file oarameters •
which are enclosed in square brackets following the appropriate file
names. The commands are:

Gn Get File from User number n
(n in the range 0 - 15)

W Write over R/0 files without
console interrogation

R Read system files

·rhe G command allows one user area to receive data files from another.
Assuming the operator has issued the USER 4 command at the CCP level,
the PIP statement

PIP X.Y = X.Y[G2]

reads file X.Y from user number 2 into user area number 4. The
command

PIP A:=A:*.*[G2]

copies all of the files from the A drive directory for user number 2
into the A drive directory of the currently logged user number. Note
tnat to ensure file security, one cannot copy files into a different
area than the one which is currently addressed by the USER command.

Note also that the PIP program itself is initially copied to a
user area (so that subsequent files can be copied) using the SAVE
command. The sequence of operations shown below effectively moves PIP
from one user area to the next.

USER 0
DDT PIP.COM
(note PIP size

G0
USER 3
SAVE s PIP.COM

login user 0
load PIP to memory

s)
return to CCP
login user 3

wheres is the integral number of memory "pages" (256 byte segments)
occupied by PIP. The number scan be determined when PIP.COM is
loaded under DDT, by referring to the value under the "NEXT" display.
If for example, the next available address is 1000, then PIP.COM
requires lC hexadecimal pages (or l times 16 + 12 = 28 pages), and
thus the value of sis 28 in the subsequent save. Once PIP is copied
in this manner, it can then be copied to another disk belonging to the
same user number through normal pip transfers.

Under normal operation, PIP will not overwrite a file which is
set to a permanent R/0 status. If attem?t is made to overwrite a R/0
file, the prompt

(All Information Contained Herein is Proprietary to Digital Research.)

8

nRSTINATION FILE IS R/0, DELETE (Y/N)?

is issued. If the operator res~nds with the character "y" then the
file is overwritten. Otherwise, the response

** NOT DELETED**

is issued, the file transfer is skippped, and PIP continues with the
next operation in sequence. In order to avoid the prompt and response
in the case of R/0 file overwrite, the command line can include the W
parameter, as shown below

PIP A:=B:*.COM[W]

which copies all non-system files to . the A drive from the B drive, and
overwrites any R/O files in the process. If the operation involves
several concatenated files, thew parameter need only be included with
the last file in the list, as shown in the following example

PIP A.DAT= B.DAT,F:NEW.DAT,G:OLD.DAT[W]

Files with the system attribute can be included in PIP transfers
if the R parameter is included, otherwise system files are not
recognized. The command line

PIP ED.COM= B:ED.COM[R]

for example, reads the ED.COM file from the B drive, even if it has
been marked as a R/0 and system file. The system file attributes are
copied, if present.

0

It should be noted that downward compatibility with previous
versions of CP/M is only maintained if the file does not exceed one
megabyte, no file attributes are set, and the file is created by user
0. If compatibility is required with non-standard (e.g., "double
density") versions of 1.4, it may be necessary to select 1.4
compatibility mode when constructing the internal disk parameter block
(see the "CP/M 2.0 Alteration Guide," and refer to Section 10 which
describes BIOS differences).

(All Information Contained Herein is Proprietary to Digital Research.)

9

6. ED ENHANCEMENTS.

·rhe CP /M standard 9rogram editor provides several new facilities
in the 2.0 release. Experience has shown that most operators use the •
relative line numbering feature of ED, and thus the editor has the "v"
(Verify Line) option set as an initial value. The operator can, of
course, disable line numbering by typing the "-v" command. If you are
not familiar with the ED line number mode, you may wish to refer to
the Appendix in the ED user's guide, where the "v" command is
described.

ED also takes file attributes into account.
attempts to edit a read/only file, the message

** FILE IS READ/ONLY**

If the operator

appears at the console. The file can be loaded and examined, but
cannot be altered in any way. Normally, the operator simply ends the
edit session, and uses STAT to change the file attribute to R/W. If
the edited file has the "system" attribute set, the message

"SYSTEM" FILE NOT ACCESSIBLE

is displayed at the console, and the edit session is aborted. Again,
the STAT program can be used to change the system attribute, if
desired.

Finally, the insert mode ("i'') command allows CRT line editing
functions, as described in Section 2, above.

(All Information Contained Herein is Proprietary to Digital Research.)

10

7. THE XSUB FUNCTION.

An additional utility program is supplied with version 2.0 of
CP/M, called XSUB, which extends the power of the SUBMIT facility to
include line input to programs as well as the console command
processor. The XSUB command is included as the first line of your
submit file and, when executed, self-relocates directly below the CCP.
All subsequent submit command lines are processed by XSUB, so that
programs which read buffered console input (BOOS function 10) receive
their input directly from the submit file. For example, the file
SAVER.SUB could contain the submit lines:

XSUB
DDT
I$1.HEX
R
G0
SAVE 1 $2.COM

with a subsequent SUBMIT command:

SUBMIT SAVER X Y

which substitutes X for $1 and Y for $2 in the command stream. The
XSUB program loads, followed by DDT which is sent the command lines
"IX.HEX" "R" and "G0" thus returning to the CCP. The final command
"SAVE 1 Y.COM" is processed by the CCP.

The XSUB program remains in memory, and prints the message

(xsub active)

on each warm start operation to indicate its presence. Subsequent
submit command ·streams do not require the XSUB, unless an intervening
cold start has occurred. Note that XSUB must be loaded after DESPOOL,
if both are to run simultaneously.

(All Information Contained Herein is Proprietary to Digital Research.)

11

8. BDOS INTERFACE CONVENTIONS.

CP/M 2.0 system calls take place in exactly the same manner as
earlier versions, with a call to location 0005H, function number in A
register C, and information address in register oair DE. Single byte W
values are returned in register A, with double byte values returned in
HL (for reasons of compatibility, register A= Land register B = H
upon return in all cases}. A list of CP/M 2.0 calls is given below,
with an asterisk following functions which are either new or revised
from version 1.4 to 2.0. Note that a zero value is returned for
out-of range function numbers.

0
1
2
3
4
5
6*
7
8
9

10*
11
12*
13
14
15*
16
17*
18*

System Reset
Console In-put
Console Output
Reader Input
Punch Output
List Output
Direct Console I/0
Get I/0 Byte
Set I/0 Byte
Pr int String
Read Console Buffer
Get Console Status
Return Version Number
Reset Disk System
Select Disk
Open File
Close File
Search for First
Search for Next

19*
20
21
22*
23*
24*
25
26
27
28*
29*
30*
31*
32*
33*
34*
35*
36*

Delete r'ile
Read Sequential
Write Sequential
Make r'ile
Rename File
Return Login vector
Return Current Disk
Set OMA Address
Get Addr (Alloc}
Write Protect Disk
Get Addr(R/0 Vector}
Set File Attributes
Get Addr(Disk Parms}
Set/Get User Code
Read Random
Write Random
Comoute File Size
Set Random Record

(Functions 28, 29, and 32 should be avoided in application programs to
maintain upward compatibility with MP/M.} The new or revised functions
are described below.

Function 6: Direct Console I/0.

Direct Console I/0 is supported under CP/M 2.0 for those
applications where it is necessary to avoid the BOOS console I/0
operations. Programs whicn currently perform direct I/0 through the
BIOS should be changed to use direct I/0 under BOOS so that they can
be fully supported under future releases of MP/Mand CP/M.

Upon entry to function 6, register E either contains hexadecimal
FF, denoting a console input request, or register E contains an ASCII
character. If the inout value is FF, then function 6 returns A= 00
if no character is ready, otherwise A contains the next console input
character.

If the input value in Eis not FF, then function 6 assumes that
E contains a valid ASCII character which is sent to the console.

(All Information Contained Herein is Proprietary to Digital Research.)

12

Function 10: Read Console Buffer.

The console buffer read operation remains unchanged except that
console line editing is supported, as described in Section 2. Note
also that certain functions whicp return the carriage to the leftmost
position (e.g., ctl-X) do so only to the column position where the
prompt ended (previously, the carriage returned to the extreme left
margin). This new convention makes operator data input and line
correction more legible.

Function 12: Return Version Number.

Function 12 has been redefined to orovide information which
allows version-independent 9rogramminq (this was previously the "lift
head" function which returned HL=0000 in version 1.4, but performed no
operation). The value returned by function 12 is a two-byte value,
with H = 00 for the CP/M release (H = 01 for MP/M), and L = 00 for all
releases previous to 2.0. CP/M 2.0 returns a hexadecimal 20 in
register L, with subsequent version 2 releases in the hexadecimal
range 21, 22, through 2F. Using function 12, for example, you can
write a?plication programs which provide both sequential and random
access functions, with random access disabled when operating under
early releases of CP/M.

In the file operations described below, DE addresses a file
control block (PCB). Further, all directory operations take place in
a reserved area which does not affect write buffers as was the case in
version 1.4, with the exception of Searcn First and Search Next, where
compatibility is required.

The File Control Block (FCB) data area consists of a sequence of 33
bytes for sequential access, and a series of 36 bytes in the case that
the file is accessed randomly. The default file control block
normally located at 005CH can be used for random access files, since
bytes 00708, 007EH, and 007FH are available for this purpose. For
notational purposes, the FC3 format is shown with the following
fields:

(All Information Contained Herein is Proprietary to Digital Research.)

13

ldrlfllf21/ /lf8ltllt2lt31exlslls21rcld01/ /ldnicrlr0lrllr21

00 01 02 ••• 08 09 10 11 12 13 14 15 16 ••• 31 32 33 34 35

where

ctr drive code (0 - 16)
0 => use default drive for file
1 => auto disk select drive A,
2 => auto disk select drive B,

16=> auto disk select drive P.

fl ••. f8 contain the file name in ASCII
upper case, with high bit= 0

tl,t2,t3 contain the file type in ASCII
upper case, with high bit= 0
tl', t2', and t3' denote the
bit of these positions,
tl' = 1 => Read/Only file,
t2' = 1 => SYS file, no DIR list

ex contains the current extent number,
normally set to 00 by the user, but
in range 0 - 31 during file I/0

sl reserved for internal system use

s2 reserved .for internal system use, set
to zero on call to OPEN, MAKE, SEARCH

re record count for extent "ex,"
takes on values from 0 - 128

d0 ••• dn filled-in by CP/M, reserved for
system use

er current record to read or write in
a $equential file operation, normally
set to zero by user

r0,rl,r2 optional random record number in the
range 0-65535, with overflow to r2,
r0,rl constitute a 16-bit value with
low byte r0, and high byte rl

Function 15: Open File.

Tne Open File operation is identical to previous definitions,
with the exception that byte s2 is automatically zeroed. Note that
previous versions of CP/M defined this byte as zero, but made no -

(All Information Contained Herein is Proprietary to Digital Research.)

14

cnecks to assure compliance. Thus, the byte is cleared to ensure
upward compatibility with the latest version, where it is required.

Function 17: Search for First.

Search First scans the directory for a match with the file given
by the FC8 addressed by DE. The value 255 (hexadecimal FF) is
returned if the file is not found, otherwise a value of A equal to 0,
l, 2, or 3 is returned indicating the file is present. In the case
that the file is found, the current DMA address is filled with the
record containing tne directory entry, and the relative starting
position is A~ 32 (i.e., rotate the A register left 5 bits, or ADD A
five times). Altnough not normally required for application programs,
the directory information can be extracted from the buffer at this
position.

An ASCII question mark (63 decimal, 3F hexadecimal) in any
position from fl through ex matches the corresponding field of any
directory entry on the default or auto-selected disk drive. If the dr
field contains an ASCII question mark, then the auto disk select
function is disabled, the default disk is searched, with the search
function returning any matched entry, allocated or free, belonging to
any user number. This latter function is not normally used by
application programs, out does allow complete flexibility to scan all
current directory values. If the dr field is not a question mark, the
s2 byte is automatically zeroed. -

Function 18: Search for Next.

The Search Next function is similar to the Search First
function, except that the directory scan continues from the last
matched entry. Similar to function 17, function 18 returns the
decimal value 255 in A when no more directory items match.

Function 19: Delete File.

The Delete File function removes files which match the PCB
addressed by DE. The filename and type may contain ambiguous
references (i.e., question marks in various positions), but the drive
select code cannot be ambiguous, as in the Search and Search Next
functions.

Function 19 returns a decimal 255 if the reference file or files
could not be found, otherwise a value in the range 0 to 3 is returned.

(All Information Contained Herein is Proprietary to Digital Research.)

15

Function 22: Make File.

·rhe Make File operation is identical to previous versions of
CP/M, except that byte s2 is zeroed upon entry to the BDOS.

Function 23: Rename File.

The Actions of the file rename functions are the same as
previous releases except that the value 255 is returned if the rename
function is unsuccessful (the file to rename could not be found),
otherwise a value in the range 0 to 3 is returned.

Function 24: Return Login Vector.

The login vector value returned by CP/M 2.0 is a 16-bit value in
HL, where the least significant bit of L corresponds to the first
drive A, and the high order bit of H corresponds to the sixteenth
drive, labelled P. Note that compatibility is maintained with earlier
releases, since registers A and L contain the same values upon return.

Function 28: Write Protect Current Disk.

The disk write orotect function provides tem9orary write
protection for the currently selected disk. Any attem?t to write to
the disk, before the next cold or warm start operation produces the
message

Bdos Err on d: R/O

Function 29: Get R/O Vector.

Function 29 returns a bit vector in register pair HL which
indicates drives which have the temporary read/only bit set. Similar
to function 24, the least significant bit corresponds to drive A,
while the most significant bit corresponds to drive P. ~he R/O bit is
set either by an explicit call to function 28, or by the automatic
software mechanisms within CP/M which detect changed disks.

Function 30: Set File Attributes.

The Set File Attributes function allows programmatic
manipulation of permanent indicators attached to files. In
particular, the R/O and System attributes (tl' and t2' above) can be
set or reset. The DE pair addresses an unambiguous file name with the
appropriate attributes set or reset. Function 30 searches for a

(All Information Contained Herein is Proprietary to Digital Research.)

16

•
match, and chanqes the matched directory entry to contain the selected
inaicators. Indicators fl' through f4' are not presently used, but
may be useful for applications programs, since they are not involved
in the matching process during file open and close operations.
Indicators f5' through f8' and t3' are reserved for future system
exi;>ansion.

Function 31: Get Disk Parameter Block Address.

~he address of the BIOS resident disk parameter block is
returned in HL as a result of this function call. This address can be
used for either of two purposes. First, the disk parameter values can
be extracted for display and space -computation purposes, or transient
programs can dynamically change the values of current disk parameters
when the disk environment changes, if required. Normally, ai;>9lication
programs will not require this facility.

Function 32: Set or Get User Code.

An application program can change or interrogate the currently
active user number by calling function 32. If register E = FF
nexadecimal, then tne value of the current user number is returned in
register A, where the value is in the range 0 to 31. If register Eis
not FF, then the current user number is changed to the value of E
(modulo 32).

Function 33: Read Random.

·rhe Read Random function is similar to the sequential file read
operation of previous releases, except that the read oi;>eration takes
place at a particular record number, selected by the 24-bit value
constructed from the three byte field following the FCB (byte
positions r0 at 33, rl at 34, and r2 at 35). Note that the sequence
of 24 bits is stored with least significant byte first (r0), middle
oyte next (rl), and high byte last (r2). CP/M release 2.0 does not
reference byte r2, except in computing the size of a file (function
35). Byte r2 must be zero, however, since a non-zero value indicates
overflow past the end of file.

Thus, in version 2.0, the r0,rl byte pair is treated as a
double-byte, or "word" value, which contains the record to read. This
value ranges from 0 to 65535, providing access to any particular
record of the 8 megabyte file. In order to orocess a file using
random access, the base extent (extent 0) must first be opened.
Altnough the base extent may or may not contain any allocated data,
this ensures that the file is properly recorded in the directory, and
is visible in DIR requests. The selected record number is then stored
into the random record field (r0,rl), and the BDOS is called to read
the record. Upon return from the call, register A either contains an

(All Information Contained Herein is Proprietary to uigital Research.)

17

error code, as listed below, or the value 00 indicating the operation
was successful. In the latter case, the current OMA address contains
the randomly accessed record. Note that contrary to the sequential
read operation, the record number is not advanced. Thus, subsequent •
random read operations continue to read the same record.

Upon each random read operation, the logical extent and current
record values are automatically set. Thus, the file can be
sequentially read or written, starting from the current randomly
accessed position. Note, however, that in this case, the last
randomly read record will be re-read as you switch from random mode to
sequential read, and the last record will be re-written as you switch
to a seguential write operation. You can, of course, simply advance
the random record position following each random read or write to
obtain the effect of a sequential I/0 operation.

Error codes returned in register A following a random read are
listed below.

01 reading unwritten data
02 (not returned in random mode)
03 cannot close current extent
04 seek to unwritten extent
05 (not returned in read mode)
06 seek past physical end of disk

Error code 01 and 04 occur when a random read operation accesses a
data block which has not been previously written, or an extent which
has not been created, which are equivalent conditions. Error 3 does
not normally occur under proper system operation, but can be cleared
by simply re-reading, or re-opening extent zero as long as the disk is
not physically write protected. Error code 06 occurs whenever byte r2
is non-zero under the current 2.0 release. Normally, non-zero return
codes can be treated as missing data, with zero return codes
indicating operation complete.

Function 34: Write Random.

The Write Random operation is initiated similar to the Read
Random call, except that data is written to the disk from the current
OMA address. Further, if the disk extent or data block which is the
target of the write has not yet been allocated, the allocation is
performed before the write operation continues. As in the Read Random
operation, the rando~ record number is not changed as a result of the
write. The logical extent number and current record positions of the
file control block are set to corresoond to the random record which is
being written. Again, sequential- read or write operations can
commence following a random write, with the notation that the
currently addressed record is either read or rewritten again as the
sequential operation begins. You can also simply advance the random
record position following each write to get the, e·ffe·ct of a sequential
write operation. Note that in particular, reading or writing the last
record of an extent in random mode does not cause an automatic extent

(All Information Contained Herein is Proprietary to Digital Research.)

18

•
switch as it does in sequential mode under either CP/M 1.4 or CP/M
2. 0 •

The error codes returned
random read operation with
indicates that a new extent
over fl ow.

by a random write are identical to the
the addition of error code 05, which
cannot be created due to directory

Function 35: Compute File Size.

When computing the size of a file, the DE register pair
addresses an FCB in random mode format (bytes r0, rl, and r2 are
present). The FCB contains an unambiguous file name which is used in
the directory scan. Upon return, the random record bytes contain the
"virtual" file size which is, in effect, the record address of · the
record following the end of the file. if, following a call to
function 35, the high record byte r2 is 01, then the file contains the
maximum record count 65536 in version 2.0. Otherwise, bytes r0 and rl
constitute a 16-bit value (r0 is the least significant byte, as
before) which is the file size.

Data can be appended to the end of an existing file by simply
calling function 35 to set the random record position to the end of
file, tnen performing a sequence of random writes starting at the
preset record address.

The virtual size of a file corresponds to the physical size when
the file is written sequentially. If, instead, the file was created
in random mode and "holes" exist in the allocation, then the file may
in fact contain fewer records than the size indicates. If, for
example, only the last record of an eight megabyte file is written in
random mode (i.e., record number 65535), then the virtual size is
65536 records, although only one block of data is actually allocated.

Function 36: Set Random Record.

The Set Random Record function causes the
produce the random record position from a file
written sequentially to a particular point.
useful in two ways.

BOOS to automatically
which has been read or
The function can be

First, it is often necessary to initially read and scan a
sequential file to extract the positions of various "key" fields. As
each key is encountered, function 36 is called to compute the random
record position for the data corresponding to this key. If the data
unit size is 128 bytes, the resulting record ?Osition is placed into a
table with the key for later retrieval. After scanning the entire
file and tabularizing the keys and their record numbers, you can move
instantly to a particular keyed record by performing a random read
using the corresponding random record number which was saved earlier.
The scheme is easily generalized when variable record lengths are

(All Information Contained Herein is Proprietary to Digital Research.)

19

involved since the program need only store the buffer-relative byte
position along with the key and record number in order to find the
exact starting position of the keyed data at a later time.

A second use of function 36 occurs when switching from a
sequential read or write over to random read or write. A file is
sequentially accessed to a particular point in the file, function 36
is called which sets the record number, and subsequent random read and
write operations continue from the selected point in the file.

This section is concluded with a rather extensive, but complete
example of random access operation. The program listed below performs
the simple function of reading or writing random records upon command
from the terminal. Given that the program has been created,
assembled, and placed into a file labelled RA~DOM.COM, the CCP level
command:

RANDOM X.DA"r

starts the test program. ·rhe program looks for a file
X.DAT (in this particular case) and, if found, proceeds
console for input. If not found, the file is created
prompt is given. Each prompt takes the form

next command?

by the name
to prompt the

before the

and is followed by operator input, terminated by a carriage return.
The input commands take the form

nw nR Q

where n is an integer value in the range 0 to 65535, and W, R, and Q
are simple command characters corresponding to random write, random
read, and quit processing, respectively. If the W command is issued,
the RANDOM program issues tQe prompt

type data:

The operator then responds by typing up to 127 characters, followed by
a carriage return. RANDOM then writes the character string into the
X. DA'r file at record n. If the R command is issued, RANDOM reads
record number n and displays the string value at the console. If the
Q command is issued, the X.DAT file is closed, and the program returns
to the console command processor. In the interest of brevity (ok, so
the program's not so brief), the only error message is

error, try again

The program begins with an initialization section where the
input file is opened or created, followed by a continuous loop at the
label ~ready" where the individual commands are interpreted. The
default file control block at 005CH and the default buffer at 0080H

1t

are used in all disk operations. ·rhe utility subroutines then follow, -

(All Information Contained Herein is Proprietary to Digital Research.)

20

which contain the
·rh is particular
processing, and
development.

principal input line processor,
program shows the elements of
can be ·used as the basis for

called
random
further

"readc."
access

program

0100

0000 =
0005 =

0001 =
0002 =
0009 =
000a =
00roc =
000f =
0"10 =
0016 =
0 k'J21 =
0 022 =

005c =
007d =
007f =
0080 =

000d =
000a =

0100 3lbc0

0103 0e0c
0105 cd050
0108 fe20
010a d2160

010d lllb0
0110 cdda0
0113 c3000

·*** ,
. * ,
;* samole random access program for cp/m 2.0
. * ,

*
*
*

·*** ,

;
reboot
bdos . ,
coninp
conout
9string
rstring
version
openf
closef
makef
read r
writer

fcb
ranrec
ranovf
buff

er
lf

org

eau
equ

egu
equ
egu
equ
egu
equ
egu
equ
egu
eau

equ
egu
equ
equ

egu
egu

100h

0000h
0005h

1
2
9
10
12
15
16
22
33
34

005ch
fcb+33
fcb+35
0080h

0dh
0ah

;base of tpa

;system reboot
;bdos entry point

;console input function
;console output function
;print string until 1 $ 1

;read console buffer
;return version number
;file open function
;close function
;make file function
; read rand om
;write random

;default file control block
;random record position
;high order (overflow) byte
;buffer address

;carriage return
;line feed

;
·*** ,
·* * ,
;* load SP, set-up file for random access *
·* * ,
·*** ,

. ,

;

;
versok:

lxi sp,stack

version 2.0?
mvi c,version
call bdos
cpi 20h ;version 2.0 or better?
jnc versok
bad version, message and go back
lxi d,badver
call Print
jmp reboot

correct version for random access

(All Information Contained Herein is Proprietary to Digital Research.)

21

0116 0e0f
0118 115c0
011b cd050
0lle 3c
0llf c2370

0122 0el6
0124 115c0
0127 cd050
012a 3c
012b c2370

012e 113a0
0131 cdda0
0134 c3000

0137 cde50
013a 227d0
013d 217f0
0140 3600
0142 fe51
0144 c2560

0147 0el0
0149 115c0
014c cd050
014f 3c
0150 cab90
0153 c3000

0156 fe57
0158 c2890

015b 114d0
015e cdda0

mvi c,openf ;ooen default fcb
lxi d,fcb
call bdos
inr a ;err 255 becomes zero
jnz ready . ,

; cannot open file, so create it
mvi c,makef
lxi d,fcb
call bdos
inr a ;err 255 becomes zero
jnz ready

: cannot create file, directory full
lxi d,nospace
call orint
jmp reboot : back to ccp

:
·*** ,
• * ,
. * , loop back to ~ready" after each command

*
*

·* * ,
·*** , . ,
ready:
: file is ready for processing . ,

call readcom ;read next command
snld ranrec :store input record#
lxi h,ranovf
mvi rn, 0 :clear high byte if set
cpi 'Q' : gu it?
jnz notq

: . quit processing, close file ,
mvi c,closef
lxi d,fcb
call bdos
inr a :err 255 becomes 0
jz error :error message, retry
jmp reboot ; back to ccp . ,

•*** ,
. * ,
;* end of quit command, process write

*
*

• * * ,
•*** ,
notg: . not the quit command, random write? ,

cpi ' W'
jnz notw

: . this is a random write, fill buffer until er ,
lxi a ,datmsg
call print ;data prompt

(All Information Contained Herein is Proprietary to Digital Research.}

22

0161 0e7f
163 21800

ic'Jl66 c5
0167 e5
0168 cdc20
016b el
016c cl
016d fe0d
016f ca780

0172 77
0173 23
0174 0d
0175 c2660

0178 3600

017a
017c
017f
018 2
'1183
0 ld 6

0e22
11Sc0
cd050
b7
c2b90
c3370

0189 fe52
018b c2b90

018e 0e21
0190 115c0
0193 cd0S0
019.6 b7
0197 c2b90

019a cdcf 0
019d 0e80
019f 21800

0la2 7e
0la3 23
0la4 e67f
0la6 ca370
0 la9 cS
0laa es

r loop:

er loop:

. ,

mvi
lxi
;read
push
push
call
pop

c,127 ;up to 127 characters
h,buff ;destination

next character to buff
b ;save counter
h ;next destination
getchr ;character to a
h ;restore counter
b ;restore next to fill
er ;end of line?
erlooo

pop
cpi
jz
not
mov
inx
dcr
jnz

end, store character
rn, a
h
C

rloop

;next to fill
;counter goes down
;end of buffer?

end of read loop, store 00
rnvi m, 0

write the record to selected record number
mvi
lxi
call
ora
jnz
jmp

c,writer
d,fcb
bdos
a
error
ready

;error code zero?
;message if not
;for another record

·*** ,
•* * ,
;* end of write command, process read *
. * * ,
·*** ,
notw:

wloop:

not a write command, read record?
C? i IR I
jnz error ;skip if not

read random record
mvi
lxi
call
ora
jnz

read
call
mvi
lxi

rnov
inx
ani
jz
push
push

c,readr
d, fcb
bdos
a ;return code 00?
error

was successful, write to console
crlf ;new line
c,128 ;max 128 characters
h,buff ;next to get

a,m
h
7fh
ready
b
h

;next character
;next to get
;mask parity
;for another command if 00
;save counter
;save next to get

(All Information Contained Herein is Proprietary to Digital Research.)

23

0 lab f e20
0lad d4c80
0lb0 el
0lbl cl
0lb2 0d
0lb3 c2a20
0lb6 c3370

0lb9 11590
0lbc cdda0
0lbf c3370

0lc2 0e01
0lc4 cd050
0lc7 c9

0lc8 0e02
0lca Sf
0lcb cd050
0lce c9

0lcf 3e0d
0ldl cdc80
0ld4 3e0a
0ld6 cdc80
0ld9 c9

01aa as
0 ldb cdcf 0
0lde dl
0ldf 0e09
0lel cd050
0le4 c9

. ,

cpi
enc
pop
pop
dcr
jnz
jmp

putchr
h
b
C

wloop
ready

:graphic?
:skip output if not

:count=count-1

·*** ,
. * ,
:* end of read command, all errors end-uo here

*
*

·* * ,
·*** ,

error:

. ,

lxi
call
j mp

d, er rrnsg
?rint
ready

·*** ,
. * ,
:* utility subroutines for console i/o

*
*

·* * ,
·*** ,
getchr:

. ,
putchr:

:
crlf:

:
print:

read com:

:read next console character to a
mvi
call
ret

c,coninp
bdos

:write character from a to console
rnvi
rnov
call
ret

c, conout
e,a :character to send
bdos :send character

:send carriage return line feed
rnvi a,cr :carriage return
call putchr
mvi a,lf :line feed
call putchr
ret

:print the buffer addressed by de until$
push d
call crlf
pop d :new line
mvi c,pstring
call bdos :print the string
ret

•

(All Information Contained Herein is Proprietary to Digital Research.)

24

•

•
0le5 116b0
0le8 cdda0
0leb 0e0a
0led 117a0
0lf0 cd050

0lf3 21000
0lf6 117c0

;read
lxi
call

the next command line to the conbuf
a.prompt

mvi
lxi
call
command
lxi

print ;command?
c, rs tr ing
d ,conbuf
bdos ;read command line
line is present, scan it
h,0 ;start with 0000
d,conlin;command line

0lf9 la readc:
lxi
ldax
inx

d ;next command cnaracter
0lfa 13
0lfb b7
l?Jlfc c8

0lfd d630
01ft fe0a
0201 d2130

0204 29
0205 4d
0206 44
0207 29
0208 29
0209 09
0 20a 8 5
0200 bi:
020c d2f90
J20f 24
0210 c3f90

0213 c630
0215 fe61
0 21 7 d8

0218 e65f
021a c9

021b 536f79

023a 4e6f29

024d 547970

0259 457272

026b 4e6570

endrd:

d ;to next command position
ora a ;cannot be end of command
rz
not zero, numeric?
sui '0 •
cpi 10 ;carry if numeric
jnc endrd
add-in next digit
dad h ;*2
mov
mov
dad
dad
dad
add
mov
jnc
inr
j mp

c,l
b,h
h
h
b
1
l,a
readc
h
readc

;be= value* 2
;*4
;*8
;*2 + *8 = *10
;+digit

;for another char
;overflow
;for another char

end of read, restore value in a
adi '0 • ; command
cpi 'a' ;translate case?
re
lower case, mask lower case bits
ani 101$llllb
ret

;
·*** I

• *
' ;* string data area for console messages

*
*

·* * ' ·*** ' badver:

nospace:

da tmsg:

er rmsg:

prompt:

.
'

db

db

db

db

db

'sorry, you need cp/m version 2$ 1

'no directory space$'

'type data: $'

'error, try again.$ 1

•next command? $ 1

(All Information Contained Herein is Proprietary to Digital Research.)

25

027a 21
027b
027c
0021 =

029c

02bc

•*** ,
·* * ,
:* fixed and variable data area *
• * * ,
•*** ,
conbuf: db conlen :length of console buffer
consiz: ds 1 :resulting size after read
conlin: ds 32 :length 32 buffer
conlen equ $-consiz . ,

ds 32 :16 level stack
stack:

end

(All Information Contained Herein is Proprietary to Digital Research.)

26

•

•
9. CP/M 2.0 MEMORY ORGA~IZATION.

Similar to earlier versions, CP/M 2.0 is field-altered to fit
various memory sizes, depending upon the host computer memory
configuration. Typical base addresses for popular memory sizes are
shown in the table below.

Module
CCP
BOOS
BIOS
Top of Ram

20k
34008
3C008
4A008
4FFFH

24k
44008
4C008
5A00H
5FFFH

32k
6400H
6C00H
7A00H
7FFFH

48k
A400H
AC008
BA008
BFFF8

64k
E4008
EC008
FA008
FFFF8

The distribution disk contains a CP/M 2.0 system configured for a 20k
Intel MOS-800 with standard IBM a~ floppy disk drives. The disk
layout is shown below:

Sector
1
2
3
4
5
6
7
ti
~

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Track 00 Module
(Bootstrap Loader)
34008 CCP + 0008
3480H CCP + 080H
3500H CCP + 100H
3580H CCP + 180H
3600H CCP + 200H
36808 CCP + 280H
37~~H CCP + 300H
3780H CCP + 380H
3800H CCP + 400H
3880H CCP + 4808
39008 CCP + 500H
39808 CCP + 580H
3A008 CCP + 6008
3A80H CCP + 6808
38008 CCP + 700H
3B808 CCP + 7808
3C00H BOOS+ 000H
3C808 BOOS+ 080H
3D008 BOOS+ 1008
3D80H BOOS+ 180H
3E00H BOOS+ 2008
3E80H BOOS+ 280H
3F00H BOOS+ 300H
3F808 BOOS+ 380H
40008 BOOS+ 400H

Track 01 Module
40808 BOOS+ 480H
41008 BOOS+ 500H
4180H BOOS+ 5808
4200H BOOS+ 600H
4280H BOOS+ 680H
4300H BOOS+ 700H
4380H BOOS+ 780H
44008 BOOS+ 800H
4480H BOOS+ 8808
4500H BOOS+ 9008
4580H BOOS+ 9808
4600H BDOS + A008
4680H BOOS+ A808
4700H BOOS+ B008
47808 BOOS+ B80H
4800H BOOS+ C00H
4880H BOOS+ C80H
4900H BOOS+ 000H
49808 BOOS+ 080H
4A00H BIOS+ 000H
4A808 BIOS+ 080H
4B00H BIOS+ 100H
4B808 BIOS+ 180H
4C008 BIOS+ 2008
4C80H aios + 280H
4D00H BIOS+ 300H

In particular, note that the CCP is at the same position on the disk,
and occupies the same space as version 1.4. The BOOS portion,
however, occupies one more 256-byte page and the BIOS portion extends
through the remainder of track 01. Thus, the CCP is 800H (2048
decimal) bytes in length, the BOOS is E00H (3584 decimal) bytes in
length, and the BIOS is up to 380H (898 decimal) bytes in length. In
version 2.0, the BIOS portion contains the standard subroutines of
1.4, along with some initialized table space, as described in the
following section.

(All Information Contained Herein is Proprietary to Digital Research.)

27

10. BIOS DIFFERENCES.

·rhe CP/M 2.0 Basic I/0 System differs only slightly in concept
from its predecesssors. Two new jump vector entry points are defined, •
a new sector translation subroutine is included, and a disk
characteristics table must be defined. •rhe skeletal form of these
changes are found in the program shown below.

1:
2:
3:
4 :
5:
6:
7:
8:
9: bpb

rpb
maxb

10:
11:
12:
13:
14:
15:
16:
17:
1 8 : ;
19:
20:
21: ;
22:
23:
24:
2 5:
2 6:
27:
2a:
29:
30:
31:
3 2:
33:
3 4:
35:
36:
37:
38:
39:
40:
41:
4 2:

;
boot:

listst:

seldsk:

.
I

.
I

selsec:

org
maclib
jmp

jmp

4000h
diskdef
boot

listst ;list status
sectran ;sector translate
4

jmp
disks
large
equ

capacity drive

equ
equ
diskdef
diskdef
diskdef
disKdef

ret

xra
ret

;drive
lxi
mov
CJ?i
rnc
proper
mov
dad
dad
dad
dad
lxi
dad
ret

16*1024 ;bytes per block
bpb/128 ;re~ords per block
65535/rpb ;max block number
0,1,58,3,bpb,maxb+l,128,0,2
1,1,58,,bpb,maxb+l,128,0,2
2,0
3,1

;nop

a ;nop

number in c
h,0 ;0000 in hl produces select error
a,c ;a is disk number 0 ••. ndisks-1
ndisks ;less than ndisks?

;return with HL = 0000 if not
disk number, return dpb element address
l,c
h ;*2
h ;*4
h ;*8
h ; *16
d,dpbase
d ;HL=.dpb

;sector number inc
lxi h,sector
mov
ret

m,c

4 3: ;
44:
45:
46:

sectran:
;translate sector BC using table at DE

;HL = .tran
4 7:

xchg
dad b ;single precision tran

(All Information Contained Herein is Proprietary to Digital Research.)

28

•

4 8: . dad b again if double precision tran I

49: mov l ,m ;only low byte necessary here
50: . fill botn H and L if double precision tran I

51: ret ;HL = ??ss
5 2: .

I

53: sector: as 1
54: endef
5 5: end

Referring to the program shown above, lines 3-6 represent the
BIOS entry vector of 17 elements (version 1.4 defines only 15 jumr;>
vector elements). The last two elements provide access to the
"LISTST" (List Status) entry point for D~SPOOL. The use of this
particular entry point is defined in the DESPOOL documentation, and is
no different than the previous 1.4 release. It should be noted that
the 1.4 DESPOOL orogram will not operate under version 2.0, but an
update version will be available from Digital Research in the near
future.

The "SECTRAN'' (Sector Number ·rranslate) entry shown in the jump
vector at line 6 provides access to a BIOS-resident sector translation
subroutine. This mechanism allows the user to specify the sector skew
factor and translation for a particular disk system, and is described
below.

A macro library is shown in the listing, called DISKDEF,
included on line 2, and referenced in 12-15. Although it is not
necessary to use the macro liorary, it greatly simplifies the disk
definition process. You must have access to the MAC macro assembler,
of course, to use the DISKDEF facility, while the macro library is
included with all CP/M 2.0 distribution disks. (See the CP/M 2.0
Alteration Guide for formulas which you can use to hand-code the
tables produced by the DISKDEF library).

A BIOS disk definition consists of the following sequence of
macro statements:

MACLIB DISKDEF
.
DISKS n
DISKDEF 0 , •••
DISKDEF 1 , ...
.
DISKDEF n-1
.
ENDEF

where the MACLIB statement loads the DISKDEF.LIB file (on the same
disk as your BIOS) into MAC's internal tables. The DISKS macro call
follows, which specifies the number of drives to be configured with
your system, where n is an integer in the range 1 to 16. A series of
DISKDEF macro calls then follow which define the characteristics of
each logical disk, 0 through n-1 (corresponding to logical drives A
through P). Note that the DISKS and DISKDEF macros generate in-line

(All Information Contained Herein is Proprietary to Digital Research.)

29

fixed data tables, and thus must be placed in a non-executable ?Ortion
of your BIOS, typically directly following the BIOS jump vector.

The remaining portion
DISKDEF macros, with the
END statement. The ENDEF
necessary uninitialized RAM

of your BIOS is defined following the
ENDEF macro call immediately preceding the

(End of Diskdef) macro generates the
areas which are located above your BIOS.

The form of the DISKDEF macro call is

DISKDEF dn,fsc,lsc, [skf] ,bls,dks,dir,cks,ofs, [0]

where

dn is the logical disk number, 0 to n-1
fsc is the first physical sector number (0 or 1)
lsc is the last sector number
skf is the optional sector skew factor
bls is the data allocation block size
dir is the number of directory entries
cks is the number of "checked" directory entries
ofs is the track offset to logical track 00
[0] is an optional 1.4 compatibility flag

The value "dn" is the drive number being defined with this DISKDEF
macro invocation. The "f sc" parameter accounts for differing sector
numbering systems, and is usually 0 or 1. The "lsc" is the last
numbered sector on a track. when present, the "skf" parameter defines
the sector skew factor which is used to create a sector translation
table according to the skew. If the number of sectors is less than
256, a single-byte table is created, otherwise each translation table
element occupies two bytes. No translation table is created if the
skf parameter is omitted (or equal to 0). The "bls'' parameter
specifies the number of bytes allocated to each data block, and takes
on the values 1024, 2048, 4096, 8192, or 16384. Generally,
performance increases with larger data block sizes since there are
fewer directory references and logically connected data records are
physically close on the disk. Further, each directory entry addresses
more data and t~e BIOS-resident ram space is reduced. The "dks"
specifies the total disk size in "bls" units. That is, if the bls =
2048 and dks = 1000, then the total disk capacity is 2,048,000 bytes.
If dks is greater than 255, then the block size parameter bls must be
greater than 10 24. ·rhe value of '' di r ·• is the total number of
directory entries which may exceed 255, if desired. The "cks"
parameter determines the number of directory items to check on each
directory scan, and is used internally to detect changed disks during
system operation, where an intervening cold or warm start has not
occurred (when this situation is detected, CP/M automatically marks
the disk read/only so that data is not subsequently destroyed).
Normally the value of cks = dir when the media is easily changed, as
is the case with a floppy disk subsystem. If the disk is permanently
mounted, then the value of cks is typically 0, since the probability
of changing disks without a restart is quite low. 'l'he "ofs" value
determines the number of tracks to skip when this particular drive is
addressed, which can be used to reserve additional operating system

(All Information Contained Herein is Proprietary to Digital Research.}

30

•
space or to simulate several logical drives on a single large capacity
physical drive. Finally, the [0] parameter is included when file
compatibility is required with versions of 1.4 which have been
modified for higher density disks. This parameter ensures that only
16K is allocated for each directory record, as was the case for
previous versions. Normally, this parameter is not included.

For convenience and economy of table space, the special form

DISKDEF i, j

gives disk i the same characteristics as a previously defined drive j.
A standard four-drive single density system, which is compatible with
version 1.4, is defined using the following macro invocations:

DISKS
DISKDEF
DISK DEF
DISKDEF
DISK DEF

ENDEF

4
0,l,26,6,1024,243,64,64,2
1,0
2,0
3,0

with all disks having the same parameter values of 26 sectors per
track (numbered 1 through 26), with 6 sectors skipped between each
access, 1024 bytes per data block, 243 data blocks for a total ·of 243k
byte disk capacity, 64 checked directory entries, and two operating
system tracks.

- The definitions given in the program shown above (lines 12
through 15) provide access to the largest disks addressable by CP/M
2.0. All disks have identical parameters, except that drives 0 and 2
skip three sectors on every data access, while disks 1 and 3 access
each sector in sequence as the disk revolves (there may, however, be a
transparent hardware skew factor on these drives).

The DISKS macro generates n "disk header blocks," starting at
address DPBASE which is a label generated by the macro. Each disk
header block contains sixteen bytes, and correspond, in sequence, to
each of the defined drives. In the four drive standard system, for
example, the DISKS macro generates a table of the form:

DPBASE
DPE0:
DPEl:
DPE2:
DPE3:

EQU
DW
DW
ow
ow

$
XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV0,ALV0
XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV1,ALV1
XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV2,ALV2
XL 'r0, 0000H, 0000H, 0000H ,DIRBUF ,DPB0 ,CSV3 ,ALV3

where the DPE (disk parameter entry) labels are included for reference
purposes to show the beginning table addresses for each drive 0
through 3. The values contained within the disk parameter header are
described in detail in the CP/M 2.0 Alteration Guide, but basically
address the translation vector for the drive (all reference XLT0,
which is the translation vector for drive 0 in the above example),

(All Information Contained Herein is Proprietary to Digital Research.)

31

followed by three 16-bit "scratch" addresses, followed by the
directory buffer address, disk parameter block address, check vector
address, and allocation vector address. The check and allocation
vector addresses are generated by the ENDEF macro in the ram area
following the BIOS code and tables.

The SELDSK function is extended somewhat in version 2.0. In
particular, the selected disk number is passed to the BIOS in register
C, as before, and the SELDSK subroutine performs the appropriate
software or hardware actions to select the disk. Version 2.0,
however, also requires the SELDSK subroutine to return the address of
the selected disk parameter header (DPE0, DPEl, DPE2, or DPE3, in the
above example) in register HL. If SELDSK returns the value HL =
0000H, then the BDOS assumes the disk does not exist, and prints a
select error mesage at the terminal. Program lines 22 through 36 give
a sample CP/M 2.0 SELDSK subroutine, showing only the disk parameter
header address calculation.

The subroutine SECTRAN is also included in version 2.0 which
performs the actual logical to physical sector translation. In
earlier versions of CP/M, the sector translation process was a part of
the BDOS, and set to skip six sectors between each read. Due
differing rotational speeds of various disks, the translation function
has become a part of the BIOS in version 2.0. Thus, the BOOS sends
sequential sector numbers to SECTRAN, starting at sector number 0.
·rhe SECTRAN subroutine uses the sequential sector number to produce a
translated sector number which is returned to the BDOS. The BDOS
subsequently sends the translated sector number to SELSEC before the
actual read or write is performed. Note that many controllers have
the capability to record the sector skew on the disk itself, and thus
there is no translation necessary. In th is case, the '' s k f" parameter
is omitted in the macro call, and SEC'rRAN simply returns the same
value which it receives. The table shown below, for example, is
constructed when the standard skew factor skf = 6 is specified in the
DISKDEF macro call:

XLT0: DB
DB

l,7,13,19,25,5,11,17,23,3,9,15,21
2,8,14,20,26,6,12,18,24,4,10,16,22

If SECTRAN is required to translate a sector, then the following
process takes place. The sector to translate is received in register
pair BC. Only the C register is significant if the sector value does
not exceed 255 (B = 00 in this case). Register pair DE addresses the
sector translate table for this drive, determined by a previous call
on SELDSK, corresponding to the first element of a disk parameter
header (XLT0 in the case shown above). The SECTRAN subroutine then
fetches the translated sector number by adding the input sector number
to the base of the translate taole, to get the indexed translate table
address (see lines 46, 47, and 48 in the above program). The value at
this location is then returned in register L. Note that if the number
of sectors exceeds 255, the translate table contains 16-bit elements
whose value must be returned in HL.

Following the ENDEF macro call, a number of uninitialized data
areas are defined. These data areas need not be a part of the BIOS

(All Information Contained Herein is Proprietary to Digital Research.)

32

•
which is loaded upon cold start, but must be available between the
BIOS and the end of memory. The size of the uninitialized RAM area is
determined by EQU statements generated by the ENDEF macro. For a
standard four-drive system, the ENDEF macro might produce

4C72 =

4D80 =
013C =

BEGDAT EQU $
(data areas)
ENDDAT EQU $
DATSIZ EQU $-BEGDAT

which indicates that uninitialized RAM begins at location 4C72H, ends
at 4DB0H-l, and occupies 013CH bytes. You must ensure that these
addresses are free for use after the system is loaded.

CP/M 2.0 is also easily adapated to disk subsystems whose sector
size is a multiple of 128 bytes. Information is provided by the BOOS
on sector write operations whicn eliminates the need for pre-read
operations, thus allowing blocking and deblocking to take place at the
BIOS level.

See the "CP/M 2.0 Alteration Guide" for additional details
concerning tailoring your CP/M system to your particular hardware.

(All Information Contained Herein is Proprietary to Digital Research.)

33

•

•

. -
01 IJ~[j~T~l AESE~ACH

- Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

ED: A CONTEXT EDITOR FOR THE CP/M DISK SYSTEM

USER'S MANUAL

COPYRIGHT {c) 1976, 1978

DIGITAL RESEARCH

Copyright (c) 1976, 1978 by Digital Research. All rights
reserved. No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any
form or by any means, ·electronic, mechanical, magnetic,
optical, chemical, manual or otherwise, without the prior
written permission of Digital Research, Post Office Box 579,
Pacific Grove, California 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any
particular purpose. Further, Digital Research reserves the
right to revise this publication and to make changes from
time to time in the content hereof without obligation of
Digital Research to notify any person of such revision or
changes.

• Table of Contents

1. ED TUTORIAL 1

1.1 Introduction to ED 1

1.2 ED Operation • • . 1

1.3 Text Transfer Functions • . . . 1

1.4 Membry Buffer Organization 5

1.5 Memory Buffer Operation 5

l.6 Command Strings 7

1.7 Text Sear,eh and Alteration • . 8

1.8 Source Libraries 11

1.9 Repetitive Command Execution 12

2. ED ERROR CONDITIONS 13

• 3. CONTROL CHARACTERS AND COMMANDS • . 14

ii

• ED USER'S MANUAL

1. ED TUTORIAL

1.1. Introduction to ED.

ED is the context editor for CP/M, and is used to create
and alter CP/M source files. ED is initiated in CP/M by
typing

{

<filename> }

ED <filename>.<filetype>

In general, ED reads segments of the source file given by
<filename> or <filename> • <filetype> into central memory,
where the file is manipulated by the operator, and subse
quently written back to disk after alterations. If the
source file does not exist before editing, it is created by
ED and initialized to empty. The overall operation of ED
is shown in Figure 1.

1.2. ED Operation

• ED operates upon the source file, denoted in Figure 1
by x.y, and passes all text through a memory buffer where
the text can be viewed or altered (the number of lines which
can be maintained in the memory buffer varies with the line
length, but has a total capacity of about 6000 characters
in a 16K CP/M system). Text material which has been edited
is written onto a temporary work file under command of the
operator. Upon termination of the edit, the memory buffer
is written to the temporary file, followed by any remaining
(unread) text in the source file. The name of the original
file is changed from x.y to x.BAK so that the most recent
previously edited source file can be reclaimed if necessary
(see the CP/M commands ERASE and RENAME). The temporary
file is then changed from x.$$$ to x.y which becomes the
resulting edited file.

The memory buffer is logically between the source file
and working file as shown in Figure 2.

1.3. Text Transfer Functions

Given that n is an integer value in the range O through
65535, the following ED commands transfer lines of text
from the source file through the memory buffer to the tem
porary (and eventually final) file:

Source

File

x.y

I
I
I, After

Edit I (E)

I

+
Backup
File

x.BAK

Figure 1 .. Overall ED Operation

Append
(A)

Source
Libraries

(R) Write

Memory Buff~r

insert Type
(I) (T)

Temporary

File

x. $$$

I After
1 (E)

Edit I
I

~

New
Source

File
x.y

Note: the ED program accepts both lowe;- and upper case ASCII
characters as input from the console. Single letter commands
can be typed in either case. The U command can be issued to
cause ED to translate lower case alphabetics to upper,~ase as
charac~ers are filled to the memory buffet from the console.
Characters are echoed as typed without translation, however.
The -u comma.rid causes ED ~o revert to "no translatio~" mode.
ED starts with an assumed -u in effect.

2

•

•

Figu:c:e 2.· Memory Buffer Organization

Source File Memory Buff~r Temporary File

1 First Line~ .. .
2 , Appended -c ,
·- .. ' -

3 ' 'L. ' ' ' _ ines, ,-
.. '

SP ~.,~,' -

1 .' First Line'

2 ' Buffered '
~ "Text , _

' ' . "'
' ' -,-" ' ~I 11 MP,.

I Unprocessed : N~I Free

: Source _I Append : Memory

r Lines l I Space ·:

Next:
Write . '

1

2

3

TP +

'
' E:"irst Line'\
, Processed· ,

. \ T~xt '\ , , -- \ -
' ' \., '
' ' ~' \ .
Free File

Space

I
I
I
I
I L- - -: - - -:- -1 L- - - - __ - _ _, '--- -- ---·

Figure 3. Logical Organization of Memory Buffer

first
line

current
line CL
last
:1ine

Memory ·Buffer

---------<cr><lf>

--------<cr><lf>

------A------<cr><lf>·
--------<cr><lf>

3

nA<cr>* - append the next n unprocessed source
lines from the source file at SP to
the end of the memory buffer at MP.
Increment SP and MP by n.

nW<cr> write the first n lines of the memory
buffer to the temporary file free space.
Shift the remaining lines n+l through
MP to the top of the memory buffer.
Increment TP by n.

E<cr> end the edit. Copy all buffered text
to temporary file, and copy all un
processed source lines to the temporary
file. Rename files as described
previously.

H<cr> - move to head of new file by performing
automatic E command. Temporary file
becomes the new source file, the memory
buffer is emptied, and a new temporary
file is created (equivalent to issuing
an E command, followed by a reinvocation
of ED using x.y as the file to edit).

O<cr> return to original file. The memory
buffer is emptied, the temporary file
id deleted, and the SP is returned to
position 1 of the source file. The
effects of the previous editing commands
are thus nullified.

Q<cr> quit edit with no file alterations,
return to CP/M.-

There are a number of special cases to consider. If the
integer n is omitted in any ED command where an integer is
allowed, then 1 is assumed. Thus, the commands A and W append
one line and write 1 line, respectively. In addition, if a
pound sign (#) is given in the place of n, then the integer
65535 is assumed (the largest value for n which is allowed).
Since most reasonably sized source files can be contained
entirely in the memory buffer, the command #A is often issued
at the beginning of the edit to read the entire source file
to memory. Similarly, the command #W writes the entire buffer
to the temporary file. Two special forms of the A and W

*<er> represents the carriage-return key

4

•

commands are provided as a convenience. The command 0A fills
the current memory buffer to at least half-full, while OW
writes lines until the buffer is at least half empty. It
should also be noted that an error is issued if the memory
buffer size is exceded. The operator may then enter any
command (such as W) which does not increase memory require
ments. The remainder of any partial line read during the
overflow will be brought into memory on the next successful
append.

1.4. Memory Buffer Organization

The memory buffer can be considered a sequence of source
lines brought in with the A command from a source file • . The
memory buffer has an associated (imaginary) character pointer
CP which moves throughout the memory buffer under command of
the operator. The memory buffer appears logically as shown
in Figure 3 where the dashes represent characters of the
source line of indefinite length, terminated by carr~e
return (<er>) and line-feed (<lf>) characters, and cp
represents the imaginary character pointer. Note that the
CP is always located ahead of the first character of the
first line, behind the last character of the last line, or
between two characters. The current line CL is the source
line which contains the CP •

1.5. Memory Buffer Operation

Upon initiation of ED, the memory buffer is empty (ie,
CP is both ahead and behind the first and last character).
The operator may either ap1end lines (A command) from the
source file, or enter the ines directly from the conso.le
with the insert command

I<cr>

ED then accepts any number of input lines, where each line
terminates with a <er> (the <lf> is supplied automatically),
until a control-z (denoted by tz is typed by the operator.
The CP is positioned after the last character entered. The
sequence

I<cr>
NOW IS THE<cr>
TIME FOR<cr>
ALL GOOD MEN<cr>
tz

leaves the memory buffer as shown below

5

NOW IS THE<cr><lf>
TIME FOR<cr><lf>
ALL GOOD MEN<cr><lf~

~

Various ~omrnands can then be issued which manipulate the CP
or di~play source text in· the vicinity of the CP. The
commands shown berow with a preceding n indicate that an
optional unsigned value can be specified. When preceded by
±, the command can be unsigned, or have an optional preceding
plus or minus sign. As before,, the pound sign (#} is replaced
by 6_5535. If an integer n is optional, 1:?ut not supplied,
then n=l is assumed. Finally, if a plus sign is optional,
but none is specified, then+ is assumed.

±B<cr> - move CP to beginning of memory buffer
if+, and to bottom if-.

±nC<cr> - move CP by ±n characters (toward front
of buffer if+}, counting the <cr><lf>
as two distinct characters

±nD<cr> - delete n characters ahead of CP if plus
and behind CP if minus.

±nK<cr> - kill (ie remove} ±n lines of source text
using CP as the current re fe,rence. If
CP is not ?t the begjnning of the current
line when K is issued, then the charac
ters before CP remain if+ is specified,
while the characters after CP remain if -
is given in the command.

±nL<cr> - if n=0 then move CP to the beginning of
the current line (if it is not •already
there} if IlF0 then first move the, CP to
~he beginning of the current line, and
then move it to the beginning of the
line which is n lines down (~f +) or up
(if -}. The CP will stop at tpe top or
bottom of the memory buffer if too large
a value of n is specified.

6

•

•

•

•

±nT<cr> - If n=O then ~ype the contents of the
current line- up to CP. If n=l then
·type the contents of the current line
trom CP to the end o·f the 1 ine. If
n>l then type the current line along
with n-1 lines which follow, if+
is specified. Similarly, if n>l and
- is given, type the previous n lines,
up to the CP. The break key can be
depressed t® abort long type-outs.

±n<cr> - equivalent to ±nLT, which moves up or
down and types a single line

1.6. Command Strings

Any number of commands can be typed contiguously (up to
the capacity of the CP/M console buffer), and are executed
only after the <er> is typed. Thus, the operator may use
the CP/M console command functions to manipulate the input
command:

Rubout

Control-U
Control-C

Control-E

remove the las½ character

delete the entire lane

re-initialize the CP/M System

return carriage for long li'nes
without transmitting buffer
(max 12 8 chars)

Suppose the memory buffer contains the characters shown
in the previous section, with the CP following the last ·
character of the buf~er. The command strings -shown below
produce the results shown to the right

Command String

1. B2T<cr>

2. SCOT<cr>

Effect

move to beginning
of buffer and type
·2 lines:
''NOW IS THE
TIME F0R"

move CP 5 charac
ters and type the
beginning of the
line
"NOW I"

7

Resulting Memory Buffer

~NOW IS THE<cr><lf>
TIME FOR<cr><lf>

ALL GOOD MEij<cr><lf>.

NOW I~- S THE<cr><lf>
~

3. 2L-T<cr>

4. -L#K<cr>

5. I<cr>
TIME TO<cr>
INSERT<cr>
tz

6. -2L#T<cr>

7. <er>

move two lines down
and type previous
line
"TIME FOR"

move up one line,
delte 65535 lines
which follow

insert two lines
of text

move up two lines,
and type 65535
lines ahead of CP
"NOW IS THE"

move down one line
and type one line
"INSERT"

1.7. Text Search and Alteration

NOW IS THE<cr><lf>

TIME FOR<cr><lf>

~ ALL GOOD MEN<cr><lf>

NOW IS THE<cr><lf> 6.,
~

NOW IS THE<cr><lf>

TIME TO<cr><lf>

INSERT<cr><lf>.,6.
~

NOW IS THE<cr><lf> _6-,
c.:!:J TIME TO<cr><lf>

INSERT<cr><lf>

NOW IS THE<cr><lf>

TIME TO<cr><lf> /".'.'~
~ INSERT<cr><lf>

ED also has a command which locates strings within the
memory buffer. The command takes the form

where c 1 through ck represent the characters to match followed
by either a <er> or control -z*. ED starts at the current
position of CP and attempts to match all k characters. The
match is attempted n times, and if successful, the CP is
moved directly after the character ck. If then matches are
not successful, the CP is not moved from its initial position.
Search strings can include7T (control-1), which is replaced
by the pair of symbols <cr><lf>.

*The control-z is used if additional commands will be typed
following the tz.

8

•

•

The following commands illustrate the use of the F
command:

Command String

1. B#T<cr>

2. FS T<cr>

3. Fitz0TT

Effect

move to beginning
and type entire
buffer

find the end of
the string "ST"

find the next "I"
and type to the
CP then type the
remainder of the
current line:
"TIME FOR"

Resulting Memory Buffer

(§£1 NOW IS THE<cr><lf>

TIME FOR<cr><lf>

ALL GOOD MEN<cr><lf>

NOW IS T .-6-, HE<cr><lf>
~

NOW IS THE<cr><lf>

TI ~ME FOR<cr><lf> cp
ALL OD MEN<cr><lf>

An abbreviated form of the insert command is also allowed,
which is often used in conjunction with the F command to make
simple textual changes. The form is:

c <er>
n

or

where c1 through en are characters to insert. If the inser
tion string is terminated by a tz, the characters c1 through
en are inserted directly following the CP, and the CP is
moved directly after character en. The action is the same.
if the command is followed by a <er> except that a <cr><lf>
is automatically inserted into the text following character
en· Consider the following command sequences as examples
of the F and I commands:

Command String Effect

BITHIS IS tz<cr> Insert "THIS IS"
at the beginning
of the text

9

Resulting Memory Buffer

THIS IS~OW THE <cr><lf>

~
Til-1E FOR<cr><lf>

ALL GOOD MEN<cr><lf>

FTIMEtz-4DIPLACEtz<cr>

find "TIME" and delete
iti then insert "PLACE"

3FOtz-3D5DICHANGESt<cr>

-8CISOURCE<cr>

find third occurrence
of "O" (ie the second
"O" in GOOD), delete
previous 3 cha-racters:
then insert "CHANGES"

move Qack 8wcharacters
and insert the line
"S'OURCE<cr><lf>"

THIS IS NOW THE<cr><lf>

PLACE~ 1FOR<cr><lf>

ALL GOOD MEN<cr><lf>

THIS IS NOW THE <cr><lf>

PLACE FOR<cr><lf>

ALL CHANGES~<cr><lf>
L=fil

THIS IS NOW THE<cr><lf>

PLACE FOR<cr><lf>

ALL SOURCE<cr><lf>

@£)CHANGES<cr><lf>

ED also provides a single command which combines the F and
I commands to perform simple string substitutions. The command
takes the form

n S C1C2···Ckt~ d1d2··-dm {<~~>)
and has exactly the same effect as applying the command string

a total of n times. That is, ED searches the memory buffer
starting at the current position of CP and successiv~ly sub
stitutes the second string for the first string until the
end of buffer, or until the substitution has been performed
n times.

As a convenience, a command similar to Fis provided by
ED which automatically appends and writes lines as the search
proceeds. The form is

which searches the entire source file for the nth occur~ence
of the string c1c2···ck (recall that F fails if the string
cannot be found in the current buffer). The operation of the

10

•

~l command is precisely the same as F except in the case that
the string cannot be found within the current memory buffer.
In this case, the entire memory contents is written (ie, an
automatic #Wis issued). Input lines are then read until
the buffer is at least half full, or the entire source file
is exhausted. The search continues in this manner until the
string has been found n times, or until the source file has
been completely transferred to the temporary file.

A final line editing function, called the juxtaposition
command takes the form

with the following action applied n times to the memory buffer:
search from the current CP for the next occurrence of the
string c 1 c 2 ••• ck. If found, insert the string d 2d 2 •.• ,dn,,
and move CP to follow dm· Then delete all characters foilowing
CP up to (but not including) the string e 1 ,e 2 , •.. eq, leaving
CP directly after dm· If e1,e2,··•eq cannot be found, then
no deletion is made. If the current line is

@) NOW IS THE TIME<cr><lf>

Then the command

JW tzWHATtztl<cr>

Results in

NOW WHAT~ <cr><lf>
~

(Recall that tl represents the pair <cr><lf> in search and
substitute strings).

It should be noted that the number of characters allowed
by ED in the F,S,N, and J commands is limited to 100 symbols.

1.8. Source Libraries

ED also allows the inclusion of source libraries during
the editing process with the R command. The form of this
command is

11

or

where f1f2-•fp is the name of a source file on the disk with
as assumed filetype of 'LIB'. ED reads the specified file,
and places the characters into the memory buffer after CP,
in a manner similar to the I conunand. Thus, if the conunand

RMACRO<cr>

is issued by the operator, ED reads from the file MACRO.LIB
until the end-of-file, and automatically inserts the charac
ters into the memory buffer.

1.9. Repetitive Command Execution

The macro conunand Mallows the ED user to group ED com
mands together for repeated evaluation. The M command takes
the form:

where c1c2···ck represent a string of ED commands, not inclu
ding another M command. ED executes the command string n
times if n>l. If n=0 or 1, the command string is executed
repetitively until an error condition is encountered (e.g.,
the end of the memory buffer is reached with an F command).

As an example, the following macro changes all occur
rences of GAMMA to DELTA within the current buffer, and
types each line which is changed:

MFGAMMAtz-SDIDELTAtz0TT<cr>

or equivalently

MSGAMMAtzDELTAtzOTT<cr>

12

• 2. ED ERROR CONDITIONS

•

On error conditions, ED prints the last character read
before the error, along with an error indicator:

? unrecognized cormnand

> memory buffer full" (use one of
the commands D,K,N,S, or W to
remove characters), F,N, ors
strings too long.

cannot apply cormnand the number
of times specified (e.g., in
F command)

O cannot open LIB file in R
cormnand

Cyclic redundancy check (CRC) information is written with
each output record under CP/M in order to detect errors on
subsequent read operations. If a CRC error is detected, CP/M
will type

PERM ERR DISK d

where dis the currently selected drive (A,B, •••). The oper
ator can choose to ignore the error by typing any character
at the console (in this case, the memory buffer data should
be examined to see if it was incorrectly read), or the user
can reset the system and reclaim the backup file, if it
exists. The file can be reclaimed by first typing the con
tents of the BAK file to ensure that it contains the proper
information:

TYPE x.BAK<cr>

where xis the file being edited. Then remove the primary
file:

ERA x.y<cr>

and rename the BAK file:

REN x.y=x.BAK<cr>

The file can then be re-edited, starting with the previous
version.

13

3. CONTROL CijARACTERS AND COMMANDS.

The following table summarizes the control characters
and commands ayai,lable in ED:

Control Character

tc

te

ti

tl

tu

tz

rubout

break

14

Function

syst·em reboot

·physical <cr><lf> (not
actually entered in
command)

logical tab (cols 1,8,
15, •..)

logical <Cr><lf> in
search and substitute
strings

line delete

string terminator

character delete

discontinue command
(e.g., stop typing) •

• Corranand

nA

±B

±nC

±nD

E

nF

H

I

nJ

±nK

±nL

nM

nN

0

±nP

Q

R

ns

±nT

± u

nW

nZ

±n<cr>

Function

append lines

begin bottom of buffer

move character positions

delete characters

end edit and close files
(normal end)

find string

end edit, close and reopen
files

insert characters

place strings in juxtaposition

kill lines

move down/up lines

macro definition

find next occurrence with
autoscan

return to original file

move and print pages

quit with no file changes

read library file

substitute strings

type lines

translate lower to upper case if u,
no translation if -u
write lines

sleep

move and type (±nLT)

15

•

•

•

Appendix A: ED 1.4 Enhancements

The ED context editor contains a number of commands which enhance its
usefulness in text editing. The improvements are found in the addition of line numbers,
free space ~nterrogation, and improved error reporting.

The context editor issued with CP/M 1.4 produces absolute Une number prefixes
when the "V" (Verify Line Numbers) command is issued. Following the V command,
the line number is displayed ahe~d of each line in the format:

nnnnn:

where nnnnn is an absolute line number in the range 1 to 65535. If the memory buffer
is empty, or if the current line is •at the end of the memory buffer, then nnnnn appears
as5hlan~. ·

,,

. The user may reference an absoiute line n4mber by preceding any command by
a number followed by a- colon, in the same format as the line number display. In this
case, the ED program mov~s the· current line reference to the absolute line number,
if the line exists in the S?Urrent memory buffer. Thus, the command

345:T

is interpreted as "move to absolute line 345, and type the line." Note that absolute
line numbers are produced only during the editing process, and are not recorded with
the file. In particular, the line numbers will change following a deleted or expanded
sect~on of text.

The t,Jser may· also reference an absolute line number as a backward or forward
distance from the current line by preceding the absolute line number by a colon. Thus,
the command

is interpreted as "type from the current line number through the line whose absolute
number is 4~~-" Combining the two lin(l reference forms, the command

345::400T

for example, is interpreted as "mc;,ve to absolute line 345, then type through absolute
line 40~." Note that absolute line references of this sort can precede any of the
standard ED commands.

A special case of the V command, 110V11 , prints the memory buffer statistics in
the form:

free/total

~here "~ree" is the number of free bytes in the memory buffer (in decimal), and "total"
1s the size of the memory buffer.

ED 1.4 also includes a "block move" facility implemented through the "X" (Xfer) •
command. The form

nX

transfers the next n lines from the current line to a temporary file called

X$$$$$$$.LIB

which is active only during the editing process. In general, the user can reposition
the current line reference to any portion of the source file and transfer lines to the
temporary file. The transferred line accumulate one after another in this file, and
can be retrieved by simply typing:

R

which is the trivial case of the library read command. In this case, the entire
transferred set of lines is read into the memory buffer. Note that the X command
does not remove the transferred lines from the memory buffer, although a K command
can be used directly after the X, and the R command does not empty the transferred
line file. That is, given that a set of lines has been transferred with the X command,
they can be re-read any number of times back into the source file. The command

is provided, however, to empty the transferred line file.
I

Note that upon normal completion of the ED program through Q or E, the
temporary LIB file is removed. If ED is aborted through ctl-C, the LIB file will exist
if lines have been transferred, but will generally be empty (a subsequent ED invocation
will erase the temporary file).

Due to common typographical errors, ED 1.4 requires several potentially disas
terous commands to be typed as single letters, rather than in composite commands.
The commands

E (end), H (head), 0 (original), Q (quit)

must be typed as single letter commands.

ED 1.4 also prints error messages in the form

BREAK "x" AT c

where x is the error character, and c is the command where the error occurred.

•

,;

- ,., -

•

1 ... •

□ I [)~IJ~Tfll RESEflRCtf
ost Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M 2.0 ALTERATION GUIDE

Copyright (c) 1979

DIGITAL RESEARCH

Copyright

Copyright (c) 1979 by Digital Research. AH rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into
any language or computer language. in any form or by any
means, electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written permission of
Digital Research, Post Office Box 579, Pacific Grove,
CaJifornia 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specificalJy disclaims any
implied warranties of merchantability or fitness for any parti
cular purpose. Further, Digital Research reserves the right
to revise this publication and to make changes from time to
time in the content hereof without obligation of Digital
Research to notify any person of such revision or changes.

Tmdemarks

CP/M is a registered trademark of Digital Research. MP/M,
MAC, and SID are trademarks of Digital Research.

,,

•

•

-

\J

1.

2.

3.

4.

5.

6.

7.

8.

9.

Introduction

CP/M 2.0 ALTERATION GUIDE

Copyright (c) 1979
Digital Research, Box 579
Pacific Grove., California

.
First Level System Regeneration.

Second Level System Generation

Sample Getsys and Putsys Programs

Diskette Organization.

The BIOS Entry Points

A Sample BIOS

A Sample Cold Start Loader

Reserved Locations in Page Zero

10. Disk Parameter Tables

11. The DISKDEF Macro Library •

12. Sector Blocking and Deblocking

.
.

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G

.

.

1

2

6

10

12

14

21

22

23

25

30

34

36
39
50
56
59
61
66

1. INTRODUC'rION

'rhe standard CP/M system assumes operation on an Intel MDS-800
microcomputer development system, but is designed so that the user can
alter a specific set of subroutines which define the hardware
operating environment. In this way, the user can produce a diskette
which operates with any IBM-3741 format compatible drive controller
and other peripheral devices.

Although standard CP/M 2.0 is configured for single density floppy
disks, field-alteration features allow adaptation to a wide variety of
disk subsystems from single drive minidisks through high-capacity
"hard disk" systems. In order to simplify the following adaptation
process, we assume that CP/M 2.0 will first be configured for single
density floppy disks where minimal editing and debugging tools are
available. If an earlier version of CP/M is available, the
customizing process is eased considerably. In this latter case, you
may wisn to briefly review the system generation process, and skip to
later sections which discuss system alteration for non-standard disk
systems.

In order to achieve device independence, CP/M is separated into
tnree distinct modules:

BIOS - basic I/0 system which is environment dependent
BDOS - basic disk operating system which is not dependent

upon the hardware configuration
CCP - the console command processor which uses the BOOS

Of these modules, only the BIOS is dependent upon the particular
hardware. That is, the user can "patch" the distribution version of
CP/M to provide a new BIOS which provides a customized interface
between the remaining CP/M modules and the user's own hardware system.
The purpose of this document is to provide a step-by-step procedure
for patching your new BIOS into CP/M.

If CP/M is being tailored to your computer system for the first
time, the new BIOS requires some relatively simple software
development and testing. The standard BIOS is listed in Appendix B,
and can be used as a model for the customized package. A skeletal
version of the BIOS is given in Appendix C which can serve as the
basis for a modified BIOS. In addition to the BIOS, the user must
write a simple memory loader, called GETSYS, which brings the
operating system into memory. In order to paten the new BIOS into
CP/M, the user must write the reverse of GETSYS, called PUTSYS, which
places an altered version of CP/M back onto the diskette. PUTSYS can
be derived from GETSYS by changing the disk read commands into disk
write commands. Sample skeletal GETSYS and PUTSYS programs are
described in Section 3, and listed in Appendix o. In order to make
the CP/M system work automatically, the user must also supply a cold
start loader, similar to the one provided with CP/M (listed in
Appendices A and B}. A skeletal form of a cold start loader is given
in Appendix E which can serve as a model for your loader.

(All Information Contained Herein is Proprietary to Digital Research.}

1

2. FIRS;r LEVEL SYS·rEM REGENERA'rION

The procedure to follow to patch the CP/M system is given below in
several steps. Address references in each step are shown with a
following "H" which denotes the hexadecimal radix, and are given for a
20K CP/M system. For larger CP/M systems, add a "bias" to each
address which is shown with a "+b" following it, where bis equal to
tne memory size - 20K. Values for bin various standard memory sizes
are

24K: b = 24K - 20K = 4K = 1000H
3 2K: b = 32K 20K = 12K = 3000H
40K: b = 40K - 201< = 20K = 5000H
48K: b = 48K - 20K = 28K = 7000H
56K: b = 56K - 20K = 36K = 90008
62K: b = 62K - 20K = 42K = A800H
64K: b = 64K - 20K = 44K = B000H

Note: The standard distribution version of CP/M is set for
operation within a 20K memory system. Therefore, you must first bring
up the 20K CP/M system, and then configure it for your actual memory
size (see Second Level System Generation).

(1) Review Section 4 and write a GETSYS program which reads the
first two tracks of a diskette into memory. The data from the diskette
must begin at location 3380H. Code GETSYS so that it starts at
location 100.ti (oase of the •r.PA), as shown in the first part of
Appendix d.

(2) Test the GETSYS program by reaa1ng a blank diskette into
memory, and check to see that the data has been read properly, and
that the diskette has not been altered in any way by the GETSYS
program.

(3) Run the GETSYS program using an initialized CP/M diskette to
see if GETSYS loads CP/M starting at 33808 (the operating system
actually starts 128 bytes later at 34008).

(4) Review Section 4 and write the PU'rSYS program which writes
memory starting at 3380H back onto the first two tracks of the
diskette. The PUTSYS program should be located at 2008, as shown in
the second part of Appendix D.

(5) Test the PUTSYS program using a blank uninitialized diskette
by writing a portion of memory to the first two tracks; clear memory
and read it back using GETSYS. Test PUTSYS completely, since this
program will be used to alter CP/M on disk.

(6) Study Sections 5, 6, and 7, along with the distribution
version of the BIOS given in Appendix B, and write a simple version
which performs a similar function for the customized environment. Us~
the program given in Appendix Casa model. Call this new BIOS by the
name CBIOS (customized BIOS). Implement only the primitive disk
operations on a single drive, and simple console input/output
functions in this phase.

(All Information Contained Herein is Proprietary to Digital Research.)

2

L I

(7) Test CBIOS completely to ensure that it properly performs
console character I/0 and disk reads and writes. Be especially
careful to ensure that no disk write operations occur accidently
during read operations, and check that the proper track and sectors
are addressed on all reads and writes. Failure to make these checks
may cause destruction of the initialized CP/M system after it is
patched.

(8) Referring to Figure 1 in Section 5, note that the SIOS is
placed between locations 4A00H and 4FFFH. Read the CP/M system using
GETSYS and replace the BIOS segment by the new CBIOS developed in step
(6) and tested in step (7). This replacement is done in the memory of
the machine, and will be placed on the diskette in the next st~p.

(9) Use PUTSYS to 9lace the patched memory image of CP/M onto the
first two tracks of a blank diskette for testing.

(10) Use GETSYS to bring the copied memory image from the test
diskette back into memory at 3380H, and check to ensure that it has
loaded back properly (clear memory, if possible, before the load).
Upon successful load, branch to the cold itart code at location 4A00H.
~he cold start routine will initialize page zero, then jump to the CCP
at location 3400H which will call the BDOS, which will call the CBIOS.
The CBIOS will be asked by the CCP to read sixteen sectors on track 2,
and if successful, CP/M will type "A>'', the system prompt.

When you make it this far, you are almost on the air. If you have
trouble, use whatever debug facilities you have available to trace and
breakpoint your CBIOS.

(11) Upon completion of step (10), CP/M has oromoted the console
for a command input. Test the disk write operation by typing

SAVE 1 X.COM

(recall that all commands must be followed by a carriage return).

CP/M should respond with another prompt (after several disk accesses):

A>

If it does not, de~ug your disK write functions and retry.

(12) Then test the directory command by typing

DIR

CP/M should respond with

A: X COM

(13) Test the erase command by typing

ERA X.COM

(All Information Contained Herein is Proprietary to Digital Research.)

3

CP/M should respond with the A ?rompt. When you make it this far, you
should have an operational system which will only require a bootstrap
loader to function completely.

(14) Write a bootstrap loader which is similar to GETSYS,
place it on track 0, sector 1 using PUTSYS (again using the
diskette, not the distribution diskette). See Sections 5 and d
more information on the bootstrap operation.

and
test
for

(15) Retest the new test diskette with the bootstrap loader
installed by executing steps (11), (12), and (13). Upon completion ot
these tests, type a control-C (control and C keys simultaneously). The
system should then execute a "warm start'' which reboots the system,
and types the A prompt.

(16) At this point, you ?robably have a good version of your
customized CP/M system on your test diskette. Use GETSYS to load CP/M
from your test diskette. Remove the test diskette, place the
distribution diskette (or a legal copy) into the drive, and use PUTSYS
to replace the distribution version by your customized version. Do
not make this replacement if you are unsure of your patch since this
step destroys the system which was sent to you from Digital Research.

(17) Load your modified CP/M system and test it by typing

DIR

CP/M should respond with a list of files which are ?rovided on the
initialized diskette. One such file should be the memory image for
the debugger, cal led DDT. COM.

NO·rE: from now on, it is important that you always reboot the CP/M
system (ctl-C is sufficient) when the diskette is removed and replaced
by anotner diskette, unless the new diskette is to be read only.

(18) Load and test the debugger by typing

DDT

(see the document "CP/M Dynamic Debugging Tool (DDT)" for operating
procedures. You should take the time to become familiar with DDT, it
will be your best triend in later steps.

(1~) Before making further CBIOS modifications, practice using
the editor (see the ED user's guide), and assembler (see the ASM
user's guide). Then recode and test the GETSYS, PUTSYS, and CBIOS
programs using ED, ASM, 9 nd oo·r. Code and test a COPY program which
does a sector-to-sector copy from one diskette to another to obtain
back-up copies of the original diskette (NOTE: read your CP/M
Licensing Agreement; it specifies your legal responsibilities when
copying the CP/M system). Place the copyright notice

Copyright (c), 1979
Digital Research

(All Information Contained Herein is Proprietary to Digital Research.)

4

I

on each copy which is made with your COPY program.

(20) Modify your CBIOS to include the extra functions for
punches, readers, signon messages, and so-forth, and add the
facilities for a additional disk drives, if desired. You can make
these changes with the GE'I'SYS and PU'rSYS programs which you have
developed, or you can refer to the following section, which outlines
CP/M facilities which will aid you in the regeneration process.

You now have a good copy of the customized CP/M system. Note that
although the CBIOS portion of CP/M which you have developed belongs to
you, the modified version of CP/M which you have created can be copied
for your use only (again, read your Licensing Agreement), and cannot
be legally copied for anyone else's use.

It should be noted that your system remains file-compatible with all
other CP/M systems, (assuming media compatiblity, of course) which
allows transfer of non-propr.ietary software between users of CP/M.

(All Information Contained Herein is Proprietary to Digital Research.)

5

3. SECOND LEVEL SYSTEM GENERA·rION

Now that you have the CP/M system running, ¥OU will want to
configure CP/M for your memory size. In general, you will first get a
memory image of CP/M with the "MOVCPM" program (system relocator) and
9lace this memory image into a named disk file. The disk file can then
be loaded, examined, patched, and replaced using the debugger, and
system generation program. For further details on the operation of
these programs, see the "Guide to CP/M Features and Facilities"
'.Tlanua 1.

Your CBIOS and BOOT can be modified using ED, and assembled using
ASM, producing files called CBIOS.HEX and BOOT.HEX, which contain the
machine code for CBIOS and BOOT in Intel hex format.

To get the memory image of CP/M into the TPA configured for the
desired memory size, give the command:

MOVCPM xx*

where "xx" is the memory size in decimal K bytes (e.g., 32 for 32K).
·r he r e s pons e w i 11 be :

CONSTRUCTING xxK CP/M VERS 2.0
READY FOR "SYSGEN" OR
"SAVE 34 CPMxx.COM"

At this ooint, an image of a CP/M in the TPA configured for the
requested memory size. The memory image is at location 0900H through
227FH. (i.e., The BOOT is at 0900H, the CCP is at 980H, the BOOS
starts at 1180H, and the BIOS is at 1F80H.) Note that the memory
image has the standard MDS-800 BIOS and BOOT on it. It is now
necessary to save the memory image in a file so that you can patch
your CBI OS and csoo·r into it:

SAVE 34 CPMxx.COM

·rhe memory image created by the "MOVCPM'' program is offset by a
negative bias so that it loads into the free area of the TPA, and thus
does not interfere with the operation of CP/M in higher memory. This
memory image can be subsequently loaded under DDT and examined or
changed in preparation for a new generation of the system. DDT is
loaded with the memory image by typing:

.J

DDT CPMxx.COM Load DDT, then read the CPM
image

oo·r should respond with

NEXT PC
2300 0100

(The DDT prompt)

You can then use the display and disassembly commands to examine

(All Information Contained Herein is Proprietary to Digital Research.)

6

portions of the memory image between 900H and 227FH. Note, however,
that to find any particular address within the memory image, you must
apply the negative bias to the CP/M address to find the actual·
address. Track 00, sector 01 is loaded to location 900H (you should
find the cold start loader at 900H to 97FH), track 00, sector 02 is
loaded into 980H (this is the base of the CCP), and so-forth through
the entire CP/M system load. In a 20K system, for example, the CCP
resides at the CP/M address 3400H, but is placed into memory at 980H
by the SYSGEN program. Thus, the negative bias, denoted by n,
satisfies

3400H + n = 980H, or n = 980H - 3400H

Assuming two's complement arithmetic, n = O580H, which can be checked
by

3400H + D580H = 10980H = 0980H (ignoring high-order
overflow).

Note that for larger systems, n satisfies

(3400H+b) + n = 980H, or
n = 980H - (3400H + b), or
n = D580H - b.

·rhe value of n for common CP/M systems is given below

memory size bias b negative offset n

20K 0000H D580H 0000H = O580H
24K 1000H O580H 1000H = C580H
32K 3000H O580H 3000H = A580H
40K 5000H O580H 5000H = 8580H
48K 7000H D580H 7000H = 6580H
56K 9000H O580H - 9000H = 4580H
62K A800H O580H - A800H = 2D80H
64K 8000H D580H - B000H = 2580H

Assume, for example, that you want to locate the address x within the
memory image loaded under DDT in a 20K system. First type

Hx,n Hexadecimal sum and difference

and DDT will respond with the value of x+n (sum) and x-n (difference).
The first number printed by DDT will be the actual memory address in
the image where the data or code will be found. The input

H3400,D580

for example, will produce 980H as the sum, which is where the CCP is
located in the memory image under DDT.

Use the L command to disassemble portions the 91OS located at
(4A00H+b)-n which, when you use the H command, produces an actual
address of 1F80H. ·rhe disassembly command would thus be

(All Information Contained Herein is Proprietary to Digital Research.)

7

LlF80

It is now necessary to oatch in your CBOOT and CBIOS routines. The
BOOT resides at location 0900H in the memory image. If the actual
load address is ·•nrl, then to calculate the bias (m) use the command:

H900,n Subtract load address from
target address.

The second number typed in response to the command is the desired bias
(m). For example, if your BOOT executes at 0080H, tne command:

H900,80

will reply

0980 0880 Sum and difference in hex.

Therefore, the bias "m'' would be 0880H. To read-in the BOOT, give the
command:

ICBOOT.HEX

Then:

Rm

You may now examine your CBOOT with:

L900

Input file CBOOT.HEX

Read CBOOT with a bias of
m (=90~H-n)

We are now ready to replace the CBIOS. Examine
where the original version of the CBIOS resides.

the area
Then type

at 1F80H

ICBIOS.HEX Ready the uhex" file for loading

assume that your CBIOS is being integrated into a 20K CP/M system, and
thus is origined at location 4A00H. In order to properly locate the
CBIOS in the memory image under DDT, we must apply the negative bias n
for a 20K system when loading the hex file. This is accomplished by
typing

RD580 Read the file with bias D580H

Upon completion of the read, re-examine the area where the CBIOS has
been loaded (use an "LlF80'' command), to ensure that is was loaded
properly. When you are satisfied that the change has been made,
return from DDT using a control-C or rlG0" command.

Now use SYSGEN to replace the patched memory image back onto a
diskette (use a test diskette until you are sure of your patch), as
shown in the following interaction

(All Information Contained Herein is Proprietary to Digital Research.)

8

i

SYSGEN
SYSGEN VERSION 2.0
SOURCE DRIVE NAME (OR

DESTINATION DRIVE NAME

DESTINATION ON 8, THEN

FUNCTION COMPLETE

Start the SYSGEN program
Sign-on message from SYSGEN

RETURN TO SKIP)
Respond with a carriage return
to skip the CP/M read operation
since the system is already in
memory.
(OR RETURN TO REBOOT)
Respond with "B" to write the
new system to the diskette in
drive B.
TYPE RETURN
Place a scratch diskette in
drive B, then type return.

DESTINATION DRIVE NAME (OR RETURN TO REBOOT)

Place the scratch diskette in your drive A, and then ?erform a
coldstart to bring up the new CP/M system you have configured.

Test the new CP/M system, and place the Digital Research copyright
notice on the diskette, as specified in your Licensing Agreement:

Copyright (c), 1979
Digital Research

9

4. SAMPLE GE·rSYS AND PUTSYS PROGRAMS

The following program provides a framework for the GETSYS and
PUTSYS programs referenced in Section 2. The READSEC and WRITESEC
subroutines must be inserted by the user to read and write the
specific sectors.

GETSYS PROGRAM -
REGISTER

READ TRACKS 0 AND 1 TO MEMORY AT 3380H

A
B
C
DE
HL
SP . ,

START: LXI SP,3380H
LXI H, 3380H
MVI B, 0

RD·rRK:
MVI C,l

RDSEC:
CALL READS EC
LXI D,128
DAD D
INR C
MOV A,C
CPI 27

USE
(SCRATCH REGISTER)
TRACK COUNT (0, 1)
SECTOR COUNT (1,2, ••• ,26)
(SCRATCH REGISTER PAIR)
LOAD ADDRESS
SET TO STACK ADDRESS

;SET STACK POINTER TO SCRATCH
;SET BASE LOAD ADDRESS
; s·rART WITH TRACK 0
; READ NEXT TRACK (IN I •r IAL LY 0)
; READ STAR"rING WITH SECTOR 1
;READ NEXT SECTOR
;USER-SUPPLIED SUBROUTINE
;MOVE LOAD ADDRESS TO NEXT 1/2
;HL = HL + 128
;SECTOR= SECTOR+ 1
;CHECK FOR END OF TRACK

AREA

PAGE

JC RDSEC ;CARRY GENERATED IF SECTOR < 27
;

ARRIVE HERE AT END OF TRACK, MOVE TO NEXT '£RACK
INR B
MOV A,B ;TEST FOR LAST TRACK
CPI 2
JC RD·rRK ;CARRY GENERA·rED IF TRACK .

' . ARRIVE HERE ~'r END OF LOAD, HALT FOR NOW
' HLT

; USER-SUPPLIED SUBROUTINE TO READ THE DISK
READS EC:
; ENTER WITH TRACK NUMBER IN REGISTER B,
; SECTOR NUMBER IN REGISTER C, AND
; ADDRESS TO FILL IN HL

PUSH
PUSH

B
H

;SAVE BAND C REGISTERS
; SAVE HL REGIS·rERS

.
perform disk read at this point, branch to

label S'rART if an error occurs
.
POP
POP
RET

END

H
B

START

;RECOVER HL
;RECOVER 8 AND C REGISTERS
;BACK TO MAIN PROGRAM

< 2

(All Information Contained Herein is Proprietary to Digital Research.)

10

Note that this program is assembled and listed in
reference purposes, with an assumed origin of HJ0H.
operation codes which are listed on the left may be
program has to be entered through your machine's front

Appendix C for
The hexadecimal
useful if the
panel switches.

·rhe PUTSYS program can be constructed from GE"rSYS by changing only
a few operations in the GETSYS program given above, as shown in
Appendix o. The register pair HL become the dump address (next
address to write), and operations upon these registers do not change
within the program. The READSEC subroutine is replaced by a WRITESEC
subroutine which performs the opposite function: data from address HL
is written to the track given by register B and sector given by
register C. It is often useful to combine GETSYS and PUTSYS into a
single program during the test and development phase, as shown in the
Appendix.

(All Information Contained Herein is Proprietary to Digital Research.)

11

5. DISKETTE ORGANIZATION

The sector allocation for the standard distribution version of
CP/M is given here for reference purposes. The first sector (see
table on the following page) contains an optional software boot
section. Disk controllers are often set up to bring track 0, sector 1
into memory at a specific location (often location 0000H). The
program in this sector, called BOOT, has the responsibility of
bringing the remaining sectors into memory starting at location
3400H+b. If your controller does not have a built-in sector load, you
can ignore the program in track 0, sector 1, and begin the load from
track 0 sector 2 to location 3400H+b.

As an example, the Intel MDS-800 hardware cold start loader brings
track 0, sector 1 into absolute address 3000H. Upon loading this
sector, control transfers to location 3000H, where the bootstrap
operation commences by loading the remainder of tracks 0, and all of
track 1 into memory, starting at 3400H+b. The user should note that
this bootstrap loader is of little use in a non-MDS environment,
although it is useful to examine it since some of the boot actions
will have to be duplicated in your cold start loader.

(All Information Contained Herein is Proprietary to Digital Research.)

12

•

Track# Sector# Page# Memory Address CP/M Module name

--
00 01 (boot address) Cold Start Loader

--
00 02 00 3400H+b CCP .. 03 3480H+b "

" 04 01 3500H+b .,
,, 05 3580H+b

06 02 3600H+b
07 3680H+b
08 03 37008+0 .. 09 3780H+b ..

.. 10 04 3800H+b
11 .. 3880H+b
12 05 3900H+b
13 3980H+b .. 14 06 3A00H+b ..
15 " 3A80H+b
16 07 3B00H+b

00 17 3B80H+b CCP
--

0 0 18 08 3C00H+b BOOS
" 19 .. 3C80H+b

20 09 3000H+b
" 21 " 3080H+b

22 10 3E00H+b
23 3E80H+b .. 24 11 3F00H+b

- " 25 II -3F80H+b
26 12 4000H+b

01 01 " 4080H+b .. 02 13 4l00H+b
" 03 4180H+b ••

04 14 4200H+b .. 05 4280H+b "
06 15 4300H+b

" 07 4380H+b ••
08 16 4400H+b ..
09 4480H+b " ,,
10 17 4500H+b "
11 .. 4580H+b " ,, 12 18 4600H+b

" 13 4680H+b "
" 14 19 4700H+b ..
,,

15
,,

4780H+b •• .. 16 20 4800H+b " .. 17 4880H+b "
18 21 4900H+b "

01 19 " 4980H+b BOOS

01 20 22 4A00H+b BIOS .. 21 Ii 4A80H+b "
ti 23 23 4B00H+b ..
" 24 ,, 4B80H+b ..
" 25 24 4C00H+b "
01 26 ,, 4C80H+b BIOS

02-76 01-26 (directory and data)

(All Information Contained Herein is Proprietary to Oiqital Research.)

6. THE BIOS ENTRY POINTS

The entry points into the BIOS from the cold start loader and BDOS
are detailed below. Entry to the BIOS is through a "jump vector·•
located at 4A00H+b, as shown below (see A?pendices Band C, as well).
The jump vector is a sequence of 17 jump instructions which send
program control to the individual BIOS subroutines. The BIOS
subroutines may be empty for certain functions (i.e., they may contain
a single RET operation) during regeneration of CP/M, but the entries
must be present in the jump vector.

·r he j um J? v e c to r a t 4 A 0 0 H + b take s the f o rm sh own be 1 ow , w he r e the
individual jump addresses are given to the left:

4A00H+b JMP B00'1' . ARRIVE HERE FROM COLD START LOAD I

4A03n+b JMP WBOO'i' ARRIVE HERE FOR WARM START
4A06H+b JMP CONST CHECK FOR CONSOLE CHAR READY
4A09H+b JMP CONIN READ CONSOLE CHARACTER IN
4A0CH+b JMP CONOUT WRITE CONSOLE CHARACTER ourr
4A0FH+b JMP LIST WRITE LISTING CHARAC'rER OUT
4Al2H+b J~P PUNCH WRI 'rE CHARACTER TO PUNCH DEVICE
4Al5H+b JMP READER ; READ READER DEVICE
4Al8H+b JMP HOME . MOVE TO '11 RACK 00 ON SELEC'I'ED DISK I

4A1Bl:f+b JMP SELDSK . SELECT DISK DRIVE I

4AlEH+b JMP SETTRK SET TRACK NUMBER
4A21H+o JM.P st: ·rSEC SET SECTOR NUMBER
4A24H+b JMP SE'rDMA SET OMA ADDRESS
4A27H+b JMP READ READ SELEC'rED SECTOR
4A2A.i:Hb JMP WRI"rE WRITE SELECTED SECTOR
4A2DH+b JMP LISTST ; RETURN LIST STATUS
4A30H+b JMP SECT RAN SECTOR TRANSLATE SUBROUTINE

Each jump address corresponds to a particular subroutine which
performs tne specific function, as outlined below. There are three
major divisions in the jump table: the system (re)initialization
which results from calls on BOOT and WBOOT, simple character I/0
performed by calls on CONST, CONIN, CONOUT, LIST, PUNCH, READER, and
LISTST, and diskette I/0 performed by calls on HOME, SELDSK, SETTRK,
SETSEC, SETDMA, READ, WRITE, and SECTRAN.

All simple character I/0 operations are assumed to be performed in
ASCII, upper and
An end-of-file
control-z (lAH).
devices, and are

lower case, with high order (parity bit) set to zero.
condition for an input device is given by an ASCII
Peripheral devices are seen by CP/M as ''logical"

assigned to physical devices within the BIOS.

In order to operate, the BOOS needs only the CONST, CONIN, and
CONOUT subroutines (LIST, PUNCH, and READER may be used by PIP, but
not the BOOS). Further, the LISTST entry is used currently only by
DESPOOL, and thus, the initial version of CBIOS may have empty
subroutines for the remaining ASCII devices.

(All Information Contained Herein is Proprietary to Digital Research.)

14

The characteristics of each device are

CONSOLE

LIST

PUNCH

READER

The principal interactive console which communicates
with the operator, accessed through CONST, CONIN, and
CONOUT. Typically, the CONSOLE is a device such as a
CRT or Teletype.

The principal listing device, if it exists on your
system, which is usually a hard-copy device, such as a
printer or Teletype.

The principal tape punching device, if it exists, which
is normally a high-speed paper tape punch or Teletype.

The principal tape reading device, such as a simple
optical reader or Teletype.

Note that a single oeripheral can be assigned as
the LIS·r, PUNCH, and READER device simultaneously. If
no peripheral device is assigned as the LIST, PUNCH, or
READER device, the CBIOS created by the user may give
an appropriate error message so that the system does
not "hang" if the device is accessed by PIP or some
other user progr&~. Alternately, the PUNCH and LIST
routines can just simply return, and the READER routine
can return with a lAB (ctl-Z) in reg A to indicate
immediate end-of-file.

For added flexibility, the user can optionally
implement the "IOBY'rE'' function wnich allows
reassignment of physical and logical devices. The
IOBYTE function creates a mapping of logical to
physical devices which ~an be altered during CP/M
processing (see the STAT commanc). ·rhe definition of
the IOBYTE function corresponds to the Intel standard
as follows: a single location in memory (currently
location 0003H) is maintained, called IOBYTE, which
defines the logical to physical device mapping which is
in effect at a particular time. The mapping is
performed by splitting the IOBYTE into four di~tinct
fields of two bits each, called the CONSOLE, READER,
PUNCH, and LIST fields, as shown below:

most significant

IOBYTE AT 0003H I LIST I PUNCH

least significant

I READER I CONSOLE I
---------------------------------------~-
bits 6,7 bits 4,5 bits 2,3 bits 0,1

The value in each field can be in the range 0-3,
defining the assigned source or destination of each
logical device. The values which can be assigned to
each field are given below

0 0 0

, o o o d o a o = \ooo oao u
~ fo

(All Information Contained Herein is Proprietary to Digital Research.)

15

C>

0

0

~ "I(D o

Ol>

Oc> Oo

(.'.I\ 0<.J

\ 0 Ou

I l u L'

CONSOLE field (bits 0 , 1)
0 - console is assigned to the console printer device
l console is assigned to the CRT device (CR'r:)
2 - batch mode: use the READER as the CONSOLE input,

and the LIS'r device as the CONSOLE output (BAT:)
3 - user defined console device (UC 1:)

field (bits 2,3)
- READER is the Teletype device (TTY:)

READER
0
l
2

READER is the high-speed reader device (RDR:)
user defined reader# 1 (URl:)

3

PUNCH
0
1
2
3

user defined reader# 2 (UR2:)

field (bits 4,5)
- PUNCH is the Teletype device (TTY:)
- PUNCH is the high speed punch device (PUN:)
- user defined punch# 1 (UPl:)

user defined punch# 2 (UP2:)

LIST field (bits 6,7)
0 - LIST is the Teletype device (TTY:)
1 - LIST is the CRT device (CRT:)
2 - LIST is the line printer device (LPT:)
3 - u s er defined list device (ULl:)

(TTY:)

Note again that the . implementation of the IOBYTE is
optional, and affects only the organization of your

-

DV ()

oc u

CBIOS. No CP/M systems use the IOBYTE (although they
tolerate the existence of the IOBYTE at location
0~03H), except for PIP which allows access to the A
physical devices, and s•rA1' which allows W

~ ... " (.) _,,. '(
{)c.\c,<.)w(.f?•

o ce \..- p,-

() UL 0 lHI

logical-physical assignments to be made and/or
displayed (for more information, see the "CP/M Features
and Facilities Guide"). In any case, the IOBYTE
implementation should be omitted until your basic CBIOS
is fully implemented and tested; then add the IOBYTE to
increase your facilities.

Disk I/0 is always performed through a sequence of
calls on the various disk access subroutines which set
up the disk number to access, the track and sector on a
particular disk, and the direct memory access (DMA)
address involved in the I/0 operation. After all these
parruneters have been set up, a call is made to the READ
or WRITE function to perform the actual I/0 operation.
Note that there is often a single call to SELDSK to
select a disk drive, followed by a number of read or
write operations to the selected disk before selecting
another drive for subsequent operations. Similarly,
there may be a single call to set the DMA address,
followed by several calls which read or write from the
selected DMA address before the DMA address is changed.
The track and sector suoroutines are always called
before the READ or WRITE operations are performed.

(All Information Contained Herein is Proprietary to Digital Research.)

16

WBOO'r

CONST

CONIN

Hote that the READ and WRITE routines should
perform several retries (10 is standard) before
reporting the error condition to the BOOS. If the
error condition is returned to the BDOS, it will report
the error to the user. The HOME subroutine may or may
not actually perform the track 00 seek, depending upon
your controller characteristics; the important point is
that track 00 has been selected for the next operation,
and is often treated in exactly the same manner as
SET'rRK with a parameter of 00.

·rhe exact responsibili tes of each entry point
subroutine are given below:

The BOOT entry point gets control from the cold start
loader and is responsible for basic system
initialization, including sending a signon message
(which can be omitted in the first version). If the
IOBYTE function is implemented, it must be set at this
point. 'rhe various system parameters which are set by
the wBOOT entry point must be initialized, and control
is transferred to the CCP at 3400H+b for further
processing. Note that reg C must be set to zero to
select drive A.

The WBOOT entry point gets control when a warm start
occurs. A warm start is performed whenever a user
program branches to location 0000H, or when the CPU is
reset from the front panel. The CP/M system must be
loaded from the first two tracks of drive A up to, but
not including, the BIOS (or CBIOS, if you have
completed your patch). System parameters must be ini
tialized as shown below:

location 0,1,2 set to JMP WBOOT for warm starts
(0000H: JMP 4A03H+b)

location 3 set initial value of IOBYTE, if
implemented in your CBIOS

location 5,6,7 set to JMP BDOS, which is the
primary entry point to CP/M for
t rans i en t pr o g rams • (0 0 0 5 H : J MP
3C06H+b)

(see Section 9 for complete details of page zero use)
Upon completion of the initialization, the WBOOT
program must branch to the CCP at 3400H+b to (re)start
the system. Upon entry to the CCP, register C is set
to the drive to ·select after system initialization.

Sample the status of the currently assigned console
device and return 0FFH in register A if a character is
ready to read, and 00H in register A if no console
characters are ready.

Read the next console character into register A, and

(All Information Contained Herein is Proprietary to Digital Research.)

17

CONOUT

LIST

PUNCH

READER

HOME

SELDSK

set the parity oit (high order bit) to zero. If no
console character is ready, wait until a character is
typed oefore returning.

Send the character from register C to the console
output device. The character is in ASCII, ·with high
order parity bit set to zero. You may want to include
a time-out on a line feed or carriage (eturn, if your
console device requires some time interval at the end
of the line (such as a TI Silent 700 terminal). You
can, if you wish, filter out control characters which
cause your console device to react in a strange way (a
control-z causes the Lear Seigler terminal to clear
the screen, for exam~le).

Send the character from register C to the currently
assigned listing device. The character is in ASCII
with zero parity.

Send the character from register C to the currently
assigned punch device. The character is in ASCII with
zero parity.

Read the next character from the currently assigned
reader device into register A with zero parity (high
order bit must be z~ro), an end of file condition is
reported by returning an ASCII control-z (lAH).

Return the disk head of the currently selected disk
(initially disk A) to the track 00 position. If your
controller allows access to the track 0 flag from the
drive, step the head until the track 0 flag is
detected. If your controller does not support this
feature, you can translate the HOME call into a call
on SETTRK with a parameter of 0.

Select the disk drive given by register C for further
operations, where register C contains 0 for drive A, l
for drive B, and so-forth up to 15 for drive P (the
standard CP/M distribution version supports four
drives). On each disk select, SELDSK must return in
HL the base address .of a 16-byte area, called the Disk
Parameter , Header, described in the Section 10. For
standard floppy disk drives, the contents of the
header and associated tables does not change, and thus
the program segment included in the sample CBIOS
performs this operation automatically. If there is an
attempt to select a non-existent drive, SELDSK returns
HL=0000H as an error indicator. Although SELDSK must
return the header address on each call, it is
advisable to postpone the actual physical disk select
operation until an I/0 function (seek, read or write)
is actually performed, since disk selects often occur
without utimately performing any disk I/0, and many
controllers will unload the head of the current disk

(All Information Contained Herein is Proprietary to Digital Research.)

18

SETTRK

SETSEC

SETDMA

READ

WRITE

before selecting the new drive. This would cause an
excessive amount of noise and disk wear.

Register BC contains the track number for subsequent
disk accesses on the currently selected drive. You
can choose to seek the selected track at this tirne, -or
delay the seek until the next read or write actually
occurs. Register BC can take on values in the range
0-76 corresponding to valid track numbers for standard
floppy disk drives, and 0-65535 for non-standard disk
subsystems.

Register BC contains the sector number (1 through 26)
for subsequent disk accesses on the currently selected
drive. You can choose to send this information to the
controller at this point, or instead delay sector
selection until a read or write operation occurs.

Register BC contains the OMA (disk memory access)
address for subsequent read or write operations. For
example, if B = 00H and C = 80H when SETDMA is called,
then all subsequent read operations read their data
into 80H through 0FFH, and all subsequent write
operations get their data from 80H through 0FFH, until
the next call to SE"rDMA occurs. 'rhe initial OMA
address is assumed to be 80H. Note that the
controller need not actually suoport airect memory
access. If, for example, all data is received and
sent through I/0 ports, the CBIOS which you construct
will use the 120 byte area starting at the selected
DMA address for the memory buffer during the following
read or write operations.

Assuming the drive has been selected, the track has
been set, the sector has been set, and the DMA address
has been specified, the READ subroutine attempts to
read one sector based upon these parameters, and
returns the following error codes in register A:

0 no errors occurred
1 non-recoverable error condition occurred

Currently, CP/M responds only to a zero or non-zero
value as the return code. That is, if the value in
register A is 0 then CP/M assumes that the disk
operation completed properly. If an error occurs,
however, the CBIOS should attempt at least 10 retries
to see if the error is recoverable. When an error is
reported the 8D0S will print the message "BDOS ERR ON
x: BAD SEC'rOR". The operator then has the option of
typing <er> to ignore the error, or ctl-C to abort.

Write the data from the currently selected OMA address
to the currently selected drive, track, and sector.
The data should be marked as "non deleted data" to

(All Information Contained Herein is Proprietary to Digital Research.)

19

L Is·rs1·

S EC'I'RAN

maintain compatibility with other CP/M systems. The
error codes given in the READ command are returned in
register A, with error recovery attempts as described
above.

Return the ready status of the list device. Used by
the DESPOOL program to improve console response during
its operation. The value 00 is returned in A if the
list device is not ready to accept a character, and
0FFH if a character can be sent to the printer. Note
that a 00 value always suffices.

Performs sector logical to physical sector translation
in order to improve the overall response of CP/M.
Standard CP/M systems are shipped with a "skew factor''
of 6, where six physical sectors are skipped between
each logical read operation. This skew factor allows
enough time between sectors for most programs to load
their buffers without missing the next sector. In
particular computer systems which use fast processors,
memory, and disk subsystems, the skew factor may be
changed to improve overall response. Note, however,
that you should maintain a single density IBM
compatible version of CP/M for information transfer
into and out of your computer system, using a skew
factor of 6. In general, SECTRAN receives a logical
sector number in BC, and a translate table address in
DE. The sector number is used as an index into the
translate table, with the resulting physical sector
number in HL. For standard systems, the tables and
indexing code is orovided in the CBIOS and need not be
changed.

(All Information Contained Herein is Proprietary to Digital Research.)

2 i!i

•
7. A SAMPLE BIOS

The program shown in Appendix C can serve as a basis for your
first BIOS. The simolest functions are assumed in this BIOS, so that
you can enter it through the front panel, if absolutely necessary.
Note that the user must alter and insert code into the subroutines for
CONS'r, CONIN, CONOUT, READ, WRITE, and WAITIO subroutines. Storage is
reserved for user-supplied code in these regions. The scratch area
reserved in page zero (see Section 9) for the BIOS is used in this
program, so that it could be implemented in ROM, if desired.

Once operational, this skeletal version can be enhanced to print
the initial sign-on message and perform better error recovery. The
subroutines for LIST, PUNCH, and READER can be filled-out, and the
IOBYTE function can be implemented.

(All Information Contained Herein is Proprietary to Digital Research.)

21

8. A SAMPLE COLD s ·rAR'r LOADER

·rhe program shown in Appendix D can serve as a basis for your cold
start loader. The disk read function must be supplied by the user,
and the program must be loaded somehow starting at location 0000.
Note that space is reserved for your patch so that the total amount of
storage required for the cold start loader is 128 bytes. Eventually,
you will probably want to get this loader onto the first disk sector
(track 0, sector 1), and cause your controller to load it into memory
automatically upon system start-up. Alternatively, you may wish to
place tne cold start loader into ROM, and place it above the CP/M
system. In this case, it will be necessary to originate the program
at a higher address, and key-in a jump instruction at system start-up
which brancnes to the loader. Subseq·uent warm starts will not require
this key-in operation, since the entry point 'WBOOT' gets control,
thus bringing the system in from disk automatically. Note also that
the skeletal cold start loader has minimal error recovery, which may
be enhanced on later versions.

(All Information Contained Herein is Proprietary to Digital Research.)

22

•

9. RESERVED LOCATIONS IN PAGE ZERO

Main memory page zero, between locations 00H and 0FFH, contains
several segments of code and data which are used during CP/M
processing. The code and data areas are given below for reference
purposes.

Locations
f rorn to
0000H - 0002H

0003H - 0003H

0 0 0 4H - 0 0 0 4H

0005H - 0007H

0008H - 0027H

0030H - 0037H

0038H - 003AH

003BH - 003FH

0040H - 004FH

0050H - 005BH

005CH - 007CH

007DH - 007FH

Contents

Contains a jump instruction to the warm start
entry point at location 4A03H+b. This allows a
simple programmed restart (JMP 0000H) or manual
restart from the front oanel.

Contains the Intel standard IOBYTE,
optionally included in the user's
described in Section 6.

which is
CBIOS, as

Current default drive number (0=A, ••• ,15=P).

Contains a jump instruction to the BDOS,and
serves two purposes: JMP 0005H provides the
primary entry point to the BOOS, as described in
the manual "CP/M Interface Guide," and LHLD
0006H brings the address field of the
instruction to the HL register pair. This value
is the lowest address in memory used by CP/M
(assuming the CCP is being overlayed). Note
that the DDT program will change the address
field to reflect the reduced memory size in
debug mode.

(interrupt locations 1 through 5 not used)

(interrupt location 6, not currently used
reserved)

Restart 7 - Contains a jump instruction into the
DDT or SID program when running in debug mode
for orogrammed breakpoints, but is not otherwise
used by CP/M.

(not currently used - reserved)

16 byte area reserved for scratch by CBIOS, but
is not used for any purpose in the distribution
version of CP/M

(not currently used - reserved)

default
transient
Processor.

file control
program by

block produced
the Console

Optional default random record oosition

for a
Command

(All Information Contained Herein is Proprietary to Digital Research.)

23

0080H - 00FFH default 12d byte disk buffer (also filled with
the command line when a transient is loaded
under the CCP) •

Note that this information is set-up for normal operation under
the CP/M system, but can be overwritten by a transient program if the
BDOS facilities are not required by the transient.

If, for example, a particular program performs only simple I/0 and
must begin execution at location 0, it can be first loaded into the
·I'.l?A, using normal CP/M facilities, with a small memory move program
which gets control wnen loaded (the memory move program must get
control from location 0100H, which is the assumed beginning of all
transient programs). The move program can then proceed to mo~e the
entire memory image down to location 0, and pass control to the
starting address of the memory load. Note that if the BIOS is
overwritten, or if location 0 (containing the warm start entry point)
is overwritten, then the programmer must bring the CP/M system back
into memory with a cold start sequence.

(All Information Contained Herein is Proprietary to Digital Research.)

24 .

10. DISK PARAMETER TABLES.

Tables are included in the BIOS which describe the particular
characteristics of the disk subsystem used with CP/M. These tables
can be either hand-coded, as shown in the sample CBIOS in Appendix C,
or automatically generated using the DISKDEF macro library, as shown
in Appendix B. The purpose here is to describe the elements of these
tables.

In general, each disk drive has an associated (16-byte)
parameter header which both contains information about the disk
and provides a scratchpad area for certain BDOS operations.
format of the disk parameter header for each drive is shown below

disk
drive

The

3✓D •y/£ ;✓1- 1rv _R i ~~z. 3J_f~iam71}ef_,, ~~~der ----------------~--
XLT I 0000 I 0000 I 0000 IDIRBUFI DPB CSV ALV

16b 16b 16b 16b 16b 16b 16b 16b

where each element is a word (16-bit) value. The meaning of each Disk
Parameter Header (DPH) element is

XLT

0000

DIRBUF

DPB ·b
{;
I:)

csv

ALV

Address of the logical to physical translation vector,
if used for this particular drive, or the value 0000H
if no sector translation takes place (i.e, the physical
and logical sector numbers are the same). Disk drives
with identical sector skew factors share the same
translate tables.

Scratchpad values for use within the BDOS (initial
value is unimportant).

Address of a 128 byte scratchpad area for directory
operations within BDOS. All DPH's address the same
scratchpad area.

Address of a disk parameter block for this drive.
Drives with identical disk characteristics address the
same disk parameter block.

Address of a scratchpad area used for software check
for changed disks. This address is different for each
DPH.

Address of a scratchpad area used by the BOOS to keep
disk storage allocation information. This address is
different for each DPH.

Given n disk drives, the DPH's are arranged in a table whose first row
of 16 bytes corresponds to drive 0, with the last row corresponding to
drive n-1. The table thus appears as

(All Information Contained Herein is Proprietary to Digital Research.)

25

DPBASE:

00 IXLT 001 0000 I 0000 I 0000 IDIRBUFIDBP 00ICSV 00IALV 001

01 IXLT 011 0000 I 0000 I 0000 IDIRBUFIDBP 01ICSV 01IALV 011

(and so-forth through)

n-llXLTn-li 0000 I 0000 I 0000 IDIRBUFIDBPn-llCSVn-llALVn-11

where the label DPBASE defines the base address of the DPH table.

A responsibility of the SELDSK subroutine is to return the base
address of the DPH for the selected drive. The following sequence of
operations returns the table address, with a 0000H returned if the
selected drive does not exist.

NDISKS EQU 4 ;NUMBER OF DISK DRIVES
.
SELDSK:

;SELECT DISK GIVEN BY BC
LXI H,0000H ;ERROR CODE
MOV A,C ;DRIVE OK?
CPI NDISKS ;CY IF SO
RNC ;RET IF ERROR
;NO ERROR, CONTINUE
MOV L,C ;LOW(DISK)
MOV H,B ;HIGH(DISK)
DAD H ;*2
DAD H ;*4
DAD H ;*8
DAD H ;*16
LXI D,DPBASE ;FIRST DPH
DAD D ;DPH(DISK)
RET

The translation vectors (XLT 00 through XLTn-1) are located
elsewhere in the BIOS, and simply correspond one-for-one with the
logical sector numbers zero through the sector count-!. The Disk
Parameter Block (DPB) for each drive is more complex. A particular
DPB, which is addressed by one or more DPH's, takes the general form

SPT IBSHIBLMIEXMI DSM

16b 8b 8b 8b 16b
,

DRM IAL0IAL11 CKS

16b 8b 8b 16b

OFF

16b

where each is a byte or word value, as shown by the '' 8b" or "16b"
indicator below the field.

SPT

BSH

is the total number of sectors per track

is the data allocation block shift factor, determined
by the data block allocation size.

(All Information Contained Herein is Proprietary to Digital Research.)

26

DSM

ORM

CKS

OFF

is the extent mask, determined by the data block
allocation size and the number of disk blocks.

determines the total storage capacity of the disk drive

determines the total number of directory entries which
can be stored on this drive AL0,AL1 determine reserved
directory blocks.

is the size of the directory check vector

is the number of reserved tracks at the beginning of
the (logical) disk.

The values of BSH and BLM determine (implicitly) the data allocation
size BLS, which is not an entry in the disk parameter block. Given
that the designer has selected a value for BLS, the values of BSH and
BLM are shown in the table below

BLS
1,024
2,048
4,096
8,192

16,384

BSH
3
4
5
6
7

BLM
7

15
31
63

127

where all values are in decimal. The value of EXM depends upon both
the BLS and whether the DSM value is less than 256 or greater than
255, as shown in the following table

BLS DSM < 256 DSM> 255
1,024 0 N/A
2,048 1 0
4,096 3 1
8,192 7 3

16,384 15 7

The value of DSM is the maximum data block number supported by
this particular drive, measured in BLS units. The product BLS times
(DSM+l) is the total number of bytes held by the drive and, of course,
must be within the capacity of the physical disk, not counting the
reserved operating system tracks.

The ORM entry is the one less than the total number of directory
entries, which can take on a 16-bit value. The values of AL0 and ALl,
however, are determined by DRM. The two values AL0 and ALl can
together be considered a string of 16-bits, as shown below.

(All Information Contained Herein is Proprietary to Digital Research.)

27

AL0 ALl

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

where position 00 corresponds to the high order bit of the byte
labelled AL0, and 15 corresponds to the low order bit of the byte
labelled ALl. Each bit position reserves a data block for number of
directory entries, thus allowing a total of 16 data blocks to be
assigned for directory entries (bits are assigned starting at 00 and
filled to the right until position 15). Each directory entry occupies
32 bytes, resulting in the following table

BLS
1,024
2,048
4,096
8,192

16,384

Directory Entries
32 times# bits
64 times# bits
128 times# bits
256 times# bits
512 times# bits

Thus, if ORM= 127 (128 directory entries), and BLS = 1024, then there
are 32 directory entries per block, requiring 4 reserved blocks. In
this case, the 4 high order bits of AL0 are set, resulting in the
values AL0 = 0F0H and ALl = 00H.

The CKS value is determined as follows: if the disk drive media
is removable, then CKS = (DRM+l)/4, where ORM is the last directory
entry number. If the media is fixed, then set CKS = 0 (no directory
records are checked in this case).

Finally,
skipped at the
automatically
mechanism for
partitioning a

the OFF field determines the number of tracks which are
beginning of the physical disk. This value is

added whenever SETTRK is called, and can be used as a
skipping reserved operating system tracks, or for
J arge disk into smaller segmented sections.

To complete the discussion of the OPB, recall that several OPH's
can address the· same OPB if their drive characteristics are identical.
Further, the OPB can be dynamically changed when a new drive is
addressed by simply changing the pointer in the DPH since the BOOS
copies the DPB values to a local area whenever the SELOSK function is
invoked.

Returning back to the DPH for a particular drive, note that the
two address values CSV ~nd ALV remain. Both addresses reference an
area of uninitialized memory following the BIOS. The areas must be
unique for each drive, and the size of each area is determined by the
values in the OPB.

The size of the area addressed by CSV is CKS bytes, which is
sufficient to hold the directory check information for this particular
drive. If CKS = (ORM+l)/4, then you must reserve (ORM+l)/4 bytes for
directory check use. If CKS = 0, then no storage is reserved.

(All Information Contained Herein is Proprietary to Digital Research.)

28

The size of the area addressed by ALV is determined by the
maximum number of data blocks allowed for this particular disk, and is
computed as (DSM/8)+1.

The CBIOS shown in Appendix C demonstrates an instance of these
tables for standard 8" single density drives. It mai be useful to
examine this program, and compare the tabular values with the
definitions given above.

(All Information Contained Herein is Proprietary to Digital Research.)

29

11. THE DISKDEF MACRO LIBRARY.

A macro library is shown in Appendix F, called DISKDEF, which
greatly simplifies the table construction process. You must have
access to the MAC macro assembler, of course, to use the DISKDEF
facility, while the macro library is included with all CP/M 2.0
distribution disks.

A BIOS disk definition consists of the following sequence of
macro statements:

MACLIB DISKDEF
.
DISKS n
DISKDEF 0 , •••
DISKDEF 1 ,
DISKDEF n-1
.
ENDEF

where the MACLIB statement loads the DISKDEF.LIB file (on the same
disk as your BIOS) into MAC's internal tables. The DISKS macro call
follows, which specifies the number of drives to be configured with
your system, where n is an integer in the range 1 to 16. A series of
DISKDEF macro calls then follow which define the characteristics of
each logical disk, 0 through n-1 (corresponding to logical drives A
through P). N~te that the DISKS and DISKDEF macros generate the
in-line fixed data tables described in the previous section, and thus
must be placed in a non-executable portion of your BIOS, typically A
directly following the BIOS jump vector. w

The remaining portion of your BIOS is defined following the
DISKDEF macros, with the ENDEF macro call immediately preceding the
END statement. The ENDEF (End of Diskdef) macro generates the
necessary uninitialized RAM areas which are located in memory above
your BIOS.

The form of the DISKDEF macro call is

DISKDEF dn,fsc,lsc, [skf] ,bls,dks,dir,cks,ofs, [0]

where

dn is the logical disk number, 0 to n-1
fsc is the first physical sector number (0 or 1)
lsc is the last sector number
skf is the optional sector skew factor
bls is the data allocation block size
dir is the number of directory entries
cks is the number of "checked" directory entries
ofs is the track offset to logical track 00
[0] is an optional 1.4 compatibility flag

The value "dn" is the drive number being defined with this DISKDEF

(All Information Contained Herein is Proprietary to Digital Research.)

30

macro invocation. The II f sc" parameter accoun.ts for differing sector
numbering systems, and is usually 0 or 1. The "lsc II is the last
numbered sector on a track. When present, the "skf" parameter defines
the sector skew factor which is used to create a sector translation
table according to the skew. If the number of sectors is less than
256, a single-byte table is created, otherwise each translation table
element occupies two bytes. No translation table is created if the
skf parameter is omitted (or equal to 0). The "bls" parameter
specifies the number of bytes allocated to each data block, and takes
on the values 1024, 2048, 4096, 8192, or 16384. Generally,
performance increases with larger data block sizes since there are
fewer directory references and logically connected data records are
physically close on the disk. Further, each directory entry addresses
more data and the BIOS-resident ram space is reduced. The "dks"
specifies the total disk size in "bls" units. That is, if the bls =
2048 and dks = 1000, then the total disk capacity is 2,048,000 bytes.
If dks is greater than 255, then the block size parameter bls must be
greater than 1024. The value of "dir" is the total number of
directory entries which may exceed 255, if desired. The "cks"
parameter determines the number of directory items to check on each
directory scan, and is used internally to detect changed disks during
system operation, where an intervening cold or warm start has not
occurred (when this situation is detected, CP/M automatically marks
the disk read/only so that data is not subsequently destroyed). As
stated in the previous section, the value of cks = dir when the media
is easily changed, as is the case with a floppy disk subsystem. If
the disk is permanently mounted, then the value of cks is typically 0,
since the probability of changing disks without a restart is quite
low. The "of s" value determines the number of tracks to skip when
this particular drive is addressed, which can be used to reserve
additional operating system space or to simulate several logical
drives on a single large capacity physical drive. Finally, the [0]
parameter is included when file compatibility is required with
versions of 1.4 which have been modified for higher density disks.
This parameter ensures that only 16K is allocated for each directory
record, as was the case for previous versions. Normally, this
parameter is not included.

For convenience and economy of table space, the special form

DISKDEF i, j

gives disk i the same characteristics as a previously defined drive j.
A standard four-drive single density system, which is compatible with
version 1.4, is defined using the following macro invocations:

(All Information Contained Herein is Proprietary to Digital Research.)

31

DISKS
DISKDEF
DISKDEF
DISKDEF
DISKDEF

ENDEF

4
0,l,26,6,1024,243,64,64,2
1,0
2,0
3,0

with all disks having the same parameter values of 26 sectors per
track (numbered 1 through 26), with 6 sectors skipped between each
access, 1024 bytes per data block, 243 data blocks for a total of 243k
byte disk capacity, 64 checked directory entries, and two operating
system tracks.

The DISKS macro generates n Disk Parameter Headers (DPH 1 s),
starting at the DPH table address DPBASE generated by the macro. Each
disk header block contains sixteen bytes, as described above, and
correspond one-for-one to each of the defined drives. In the four
drive standard system, for example, the DISKS macro generates a table
of the form:

DPBASE
DPE0:
DPEl:
DPE2:
DPE3:

EQU
DW
DW
DW
DW

$
XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV0,ALV0
XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV1,ALV1
XL'r0, 0 0 00H, 0 0 00H, 0000H ,DIRBUF ,DPB0, CSV2 ,ALV2
XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV3,ALV3

where the DPH labels are included for reference purposes to show the
beginning table addresses for each drive 0 through 3. The values
contained within the disk parameter header are described in detail in
the previous section. The check and allocation vector addresses are
generated by the ENDEF macro in the ram area following the BIOS code
and tables.

Note that if the "skf" (skew factor) parameter is omitted (or
equal to 0), the translation table is omitted, and a 0000H value is
inserted in the XLT position of the disk parameter header for the
disk. In a subsequent call to perform the logical to physical
translation, SECTRAN receives a translation table address of DE =
0000H, and simply returns the original logical sector from BC in the
HL register pair. A translate table is constructed when the skf
parameter is present, and the (non-zero) table address is placed into
the corresponding DPH's. The table shown below, for example, is
constructed when the standard skew factor skf = 6 is specified in the
DISKDEF macro call:

XLT0: DB
DB

l,7,13,19,25,5,11,17,23,3,9,15,21
2,8,14,20,26,6,12,18,24,4,10,16,22

Following the ENDEF macro call, a number of uninitialized data
areas are defined. These data areas need not be a part of the BIOS
which is loaded upon cold start, but must be available between the
BIOS and the end of memory. The size of the uninitialized RAM area is
determined by EQU statements generated by the ENDEF macro. For a
standard four-drive system, the ENDEF macro might produce

(All Information Contained Herein is Proprietary to Digital Research.)

32

4C72 =

4DB0 =
013C =

BEGDAT EQU $
{d a areas)

DAT EQU $
DATSIZ EQU $-BEGDAT

which indicates that uninitialized RAM begins at location 4C72H, ends
at 4DB0H-l, and occupies 013CH bytes. You must ensure that these
addresses are free for use after the system is loaded.

After modification, you can use the STAT program to check your
drive characteristics, since STAT uses the disk parameter block to
decode the drive yinformation. The STAT command form

STAT d:DSK:

decodes the disk parameter block for drive d {d=A, ••• ,P) and displays
the values shown below:

r: 128 Byte Record Capacity
k: Kilobyte Drive Capacity
d: 32 Byte Directory Entries
c: Checked Directory Entries
e: Records/ Extent
b: Records/ Block
s: Sectors/ Track
t: Reserved Tracks

Three examples of DISKDEF macro invocations are
corresponding STAT parameter values {the last
8-megabyte system).

DISKDEF 0,l,58,,2048,256,128,128,2

shown below
produces a

r=4096, k=512, d=l28, c=l28~ e=256, b=l6, s=58, t=2

DISKDEF 0,l,58,,2048,1024,300,0,2
r=l6384, k=2048, d=300, c=0, e=l28, b=l6, s=58, t=2

DISKDEF 0,l,58,,16384,512,128,128,2
r=65536, k=8192, d=l28, c=l28, e=l024, b=l28, s=58, t=2

with
full

{All Information Contained Herein is Proprietary to Digital Research.)

33

12. SECTOR BLOCKING AND DEBLOCKING.

Upon each call to the BIOS WRITE entry point, the CP/M BOOS
includes information which allows effective sector blocking and
deblocking where the host disk subsystem has a sector size which is a
multiple of the basic 128-byte unit. The purpose here is to present a
general-purpose algorithm which can be included within your BIOS which
uses the BOOS information to perform the operations automatically.

Upon each call to WRITE, the BOOS provides the following
information in register C:

0
1
2

=
=
=

normal sector wr~te
write to directoty sector
write to the first sector
of a new data block

Condition 0 occurs whenever the next write operation is into a
previously written area, such as a random mode record update, when the
write is to other than the first sector of an unallocated block, or
when the write is not into the directory area. Condition 1 occurs
when a write into the directory area is performed. Condition 2 occurs
when the first record (only) of a newly allocated data block is
written. In most cases, application programs read or write multiple
128 byte sectors in sequence, and thus there is little overhead
involved in either operation when blocking and deblocking records
since pre-read operations can be avoided when writing records.

Appendix G lists the blocking and deblocking algorithms in skeletal
form (this file is included on your CP/M disk). Generally, the
algorithms map all CP/M sector read operations onto the host disk
through an intermediate buffer which is the size of the host disk
sector. Throughout the program, values and variables which relate to
the CP/M sector involved in a seek operation are prefixed by "sek,"
while those related to the host disk system are prefixed by "hst."
The equate statements beginning on line 29 of Appendix G define the
mapping between CP/M and the host system, and must be changed if other
than the sample host system is involved.

The entry points BOOT and WBOOT must contain the initialization
code starting on line 57, while the SELDSK entry point must be
augmented by the code starting on line 65. Note that although the
SELDSK entry point computes and returns the Disk Parameter Header
address, it does not physically selected the host disk·at this point
(it is selected later at READHST or WRITEHST). Further, SETTRK,
SETTRK, and SETDMA simply store the values, but do not take any other
action at this point. SECTRAN performs a trivial trivial function of
returning the physical sector number.

The principal entry points are READ and WRITE, starting on lines
110 and 125, respectively. These subroutines take the place of your
previous READ and WRITE operations.

The actual physical read or write takes place at either WRITEHST
or READHST, where all values have been prepared: hstdsk is the host

(All Information Contained Herein is Proprietary to Digital Research.)

34

•

disk number, hsttrk is the host track number, and hstsec is the host
sector number (which may require translation to a physical sector
number). You must insert code at this point which performs the full
host sector read or write into, or out of, the buffer at hstbuf of
length hstsiz. All other mapping functions are performed by the
algorithms.

This particular algorithm was tested using an 80 megabyte hard
disk unit which was originally configured for 128 byte sectors,
producing approximately 35 megabytes of formatted storage. When
configured for 512 byte host sectors, usable storage increased to 57
megabytes, with a corresponding 400% im?rovement in overall res?onse.
In this situation, there is no apparent overhead involved in
deblocking sectors, with the advantage that user programs still
maintain the (less memory consuming) 128-byte sectors. This is
primarily due, of course, to the information provided by the BOOS
which eliminates the necessity for pre-read operations to take place •

(All Information Contained Herein is Proprietary to Digital Research.)

35

0000 =
f fff =
0000 =

0000 =

0000 =
0806 =
1880 =
1600 =
1603 =

3000

1880 =
0002 =
0031 =
0019 =
0018 =

f800 =
ff0f =
0078 =
0079 =
007b =
007f =

0078 =
0079 =
007a =
00ff =
0003 =
0004 =
0100 =

3000 310001

3003 db79
3005 db7b

3007 dbff

1~~6 ~~~130

;
;

APPENDIX A: THE MDS COLD START LOADER

MDS-800 Cold Start Loader for CP/M 2.0

Version 2.0 August, 1979 . ,
false equ
true equ
testing equ

bias

bias

cpmb
bdos
bdose
boot
rboot

. ,
bdosl
ntrks
bdoss
bdos0
bdosl . ,
mon80
rmon80
base
rtype
rbyte
reset

dstat
ilow
ihigh
bsw
recal
readf
stack

rstart:

if
equ
endif
if
equ
endif
equ
equ
equ
egu
equ

org

equ
equ
equ
equ
eau

equ
equ
equ
equ
equ
equ

equ
equ
egu
equ
equ
egu
equ

lxi
clear
in
in

; check
colds tart:

in
ani
Jnz

0
not false
false

testing
03400h

not testing
0000h

bias
806h+bias
1880h+bias
1600h+bias
boot+3

;base of dos load
;entry to dos for calls
;end of dos load
;cold start entry point
;warm start entry point

3000h ;loaded here by hardware

bdose-cpmb
2 ;tracks to read
bdosl/128
25
bdoss-bdos0

;# sectors in bdos
;# on track 0
;# on track 1

0f800h
0ff0fh
078h
base+l
base+3
base+?

base
base+l
base+2
0ffh
3h
4h
100h

;intel monitor base
;restart location for mon80
;'base' used by controller
;result type
;result byte
;reset controller

;disk status port
;low iopb address
;high iopb address
;boot switch
;recalibrate selected drive
;disk read function
;use end of boot for stack

sp,stack;in case of call to mon80
disk status

rtype
rbyte

if boot switch is off

bsw
02hd t t•switch on? coI s ar

36

300e d37f

3010 0602
3012 214230

3015 7d
3016 d379
3018 7c
3019 d37a

.
I

start:

301b db78 wait0:

j~t~ ~~~g30

3022 db79
3024 e603
3026 fe02

3028 d20030

302b db7b

302d 17
302e dc0fff
3031 lf
3032 e61e

3034 c20030

3037 110700
303a 19
303b 05
303c c21530

303f c30016

.
I

.
I

clear the controller
out reset ;logic cleared

mvi
lxi

b,ntrks ;number of tracks to read
h,iopb0

read first/next track into cpmb
mov a,1
out ilow
mov a,h
OU t ihigh
in dstat
ani 4
J z wai t0

check
in
ani
cpi

if
enc
endif
if
jnc
endif

disk status
rtype
llb
2

testing
rmon8& ;go to monitor if 11 or 10

not testing
rstart ;retry the load

in rbyte ;i/o complete, check status
if not ready, then go to mon80
ral
cc rmon80 ;not ready bit set
rar ;restore
ani 11110b ;overrun/addr err/seek/ere

if
cnz
endif
if
jnz
endif

lxi
dad
dcr
jnz

testing
rmon80 ;go to monitor

not testing
rstart ;retry the load

d,iopbl ;length of iopb
d ;addressing next iopb
b ;count down tracks
start

jmp boot, print message, set-up jmps
jmp boot

parameter blocks

37

3042 80 iopb0: db 80h ; iocw, no update
3043 04 db readf ;read function
3044 19 db bdos0 ;# sectors to read trk 0 -3045 00 db 0 ;track 0
3046 02 db 2 ;start with sector 2, trk 0
3047 0000 dw cprnb ;start at base of bdos
0007 = iopbl egu $-iopb0

;
3049 80 iopbl: db 80h
304a 04 db readf
304b 18 db bdosl ;sectors to read on track 1
304c 01 db 1 ; track 1
304d 01 db 1 ;sector 1
304e 800c dw cprnb+bdos0*128 ;base of second rd
3050 end

38

0014 =

4a00
3400 =
3c06 =
1600 =
002c =
0002 =
0004 =
0080 =
000a =

4a00 c3b34a

APPENDIX B: THE MDS BASIC I/0 SYSTEM (BIOS)

mds-800 i/o drivers for cp/m 2.0
(four drive single density version)

vers

cpmb
bdos
cpml
nsects
offset
cdisk
buff
retry

version 2.0 august, 1979

equ 20 ;version 2.0

copyright (c) 1979
digital research
box 579, pacific grove
california, 93950

org
egu
egu
equ
equ
equ
equ
equ
equ

perform
boot
wboot

4a00h ;base of bios in 20k system
3400h ;base of cpm ccp
3c06h ;base of bdos in 20k system
$-cpmb ;length (in bytes) of cpm system
cpml/128;number of sectors to load
2 ;number of disk tracks used by cp
0004h ;address of last logged disk
0080h ;default buffer address
10 ;max retries on disk i/o before e

following functions
cold start
warm start (save i/o byte)

(boot
const

and wboot are the same for mds)
console status

conin
conout
list
punch
reader
home

reg-a= 00 if no character ready
reg-a= ff if character ready
console character in (result in reg-a)
console character out (char in reg-c)
list out (char in reg-c)
punch out (char in reg-c)
paper cape reader in (result to reg-a)
move to track 00

(the following calls set-up the io parameter bloc
mds, which is used to perform subsequent reads an
seldsk select disk given by reg-c (0,1,2 •••)
settrk set track address (0, .•• 76) for sub r/w
setsec set sector address (1, ••• ,26)
setdma set subsequent dma address (initially 80h

read/write assume previous calls to set i/o parms
read read track/sector to preset dma address
write write track/sector from preset dma addres

vector for indiviual routines
boot

4a03 c3c34a wboote:
4a06 c3614b

jump
jmp
jmp
jmp
jmp
jmp

wboot
const

4a09 c3644b conin
4a0c c36a4b conout

39

4a0f c36d4b
4al2 c3724b
4al5 c3754b
4al8 c3784b
4alb c37d4b
4ale c3a74b
4a21 c3ac4b
4a24 c3bb4b
4a27 c3cl4b
4a2a c3ca4b
4a2d c3704b
4a30 c3bl4b

4a33+=
4a33+824a00
4a37+000000
4a3b+6e4c73
4a3f+0d4dee
4a43+824a00
4a47+000000
4a4b+6e4c73
4a4f+3c4dld
4a53+824a00
4a57+000000
4a5b+6e4c73
4a5f+6b4d4c
4a63+824a00
4a67+000000
4a6b+6e4c73
4a6f+9a4d7b

4a73+=
4a73+la00
4a75+03
4a76+07
4a77+00
4a78+f200
4a7a+3f00
4a7c+c0
4a7d+00
4a7e+l000
4a80+0200
4a82+=
4a82+0 l
4a83+0 7
4a84+0d
4a85+13
4a86+19
4a87+05
4a88+0b
4a89+11
4a8a+l7
4a8b+03

dpbase
dpe0:

dpel:

dpe2:

dpe3:

dpb0

xlt0

jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp

maclib
disks
equ
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
diskdef
equ
dw
db
db
db
dw
dw
db
db
dw
dw
equ
db
db
db
db
db
db
db
db
db
db

list
punch
reader
home
seldsk
settrk
setsec
setdma
read
write
listst ;list status
sectran

diskdef ;load the disk definition library
4 ;four disks
$;base of disk parameter blocks
xlt0,0000h ;translate table
0000h,0000h ;scratch area
dirbuf,dpb0 ;dir buff,parm block
csv0,alv0 ;check, alloc vectors
xltl,0000h ;translate table
0000h,0000h ;scratch area
dirbuf,dpbl ;dir buff,parm block
csvl,alvl ;check, alloc vectors
xlt2,0000h ;translate table
0000h,0000h ;scratch area
dirbuf,dpb2 ;dir buff,parm block
csv2,alv2 ;check, alloc vectors
xlt3,0000h ;translate table
0000h,0000h ;scratch area
dirbuf,dpb3 ;dir buff,parm block
csv3,alv3 ;check, alloc vectors
0,l,26,6,1024,243,64,64,offset
$;disk parm block
26 ;sec per track
3 ;block shift
7 ;block mask
0 ;extnt mask
242 ;disk size-1
63 ;directory max
192 ;alloc0
0 ;allocl
16 ;check size
2 ;offset
$;translate table
1
7
13
19
25
5
11
17
23
3

40

4a8c+09
4a8d+0f
4a8e+l5
4a8f+02
4a90+08
4a91+0e
4a92+14
4a93+la
4a94+06
4a95+0c
4a96+12
4a97+18
4a98+04
4a99+0a
4a9a+l0
4a9b+l6

4a73+=
00lf+=
0010+=
4a82+=

4a73+=
00lf+=
0010+=
4a82+=

4a73+=
00lf+=
0010+=
4a82+=

00fd =
00fc =
00f3 =
007e =

f800 =
ff0f =
f803 =
f806 =
f809 =
f80c =
f80f =
f812 =

dpbl
alsl
cssl
xltl

dpb2
als2
css2
xlt2

dpb3
als3
css3
xlt3

. ,
revrt
intc
icon
inte

mon80
rmon80
ci
ri
co
po
lo
csts

db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
diskdef
equ
equ
equ
equ
diskdef
equ
equ
equ
equ
diskdef
equ
equ
equ

9
15
21
2
8
14
20
26
6
12
18
24
4
10
16
22
1,0
dpb0
als0
css0
xlt0
2,0
dpb0
a1s0
css0
xlt0
3,0
dpb0
als0
css0
xlt0

;equivalent parameters
;same allocation vector size
;same checksum vector size
;same translate table

;equivalent parameters
;same allocation vector size
;same checksum vector size
;same translate table

;equivalent parameters
;same allocation vector size
;same checksum vector size
;same translate table equ

endef occurs at end of assembly

end of controller - independent code, the rema1n1
are tailored to the particular operating environrn
be altered for any system which differs from the

the following code assumes the mds monitor exists
and uses the i/o subroutines within the monitor

we also
equ
equ
equ
equ

assume the mds system has four disk drive
0fdh ;interrupt revert port
0fch ;interrupt mask port
0f3h ;interrupt control port
0111$1110b;enable rst 0(warm boot) ,rst 7

mds
equ
equ
equ
equ
equ
equ
equ
equ

monitor equates
0f800h ;mds monitor
0ff0fh ;restart mon80 (boot error)
0f803h ;console character to reg-a
0f806h ;reader in to reg-a
0f809h ;console char from c to console o
0f80ch ;punch char from c to punch devic
0f80fh ;list from c to list device
0f812h ;console status 00/ff to register

41

0078 =
0078 =
0079 =
007b =

0079 =
007a =

0004 =
0006 =
0003 =
0004 =
000d =
000a =

4a9c
4a9f
4aal
4aad
4ab0

4_ab3
4ab6
4ab9
4abc
4abd
4ac0

0d0a0a
3230
6b20.43f
3 2 2e3 0
0d0a00

310001
219c4a
cdd34b
af
320400
c30f4b

4ac3 318000

4ac6 0e0a
4ac8 cs

4ac9 010034
4acc cdbb4b
4acf 0e00
4adl cd7d4b
4ad4 0e00
4ad6 cda74b
4ad9 0e02
4adb cdac4b

4ade cl
4adf 062c

. ,
base
dstat
rtype
rbyte
;
ilow
ihigh

readf
writf
recal
iordy
er
lf

signon:

;
boot:

disk ports and commands
equ 78h ;base of disk command

;disk status (input)
;~esult type (input)
;result byte (input)

io ports
equ base
equ base+l
equ base+3

equ
equ

equ
equ
equ
equ
equ
equ

; signon
db
db
db
db
db

;print
(note:
lxi
lxi
call
xra
sta
jmp

base+l
base+2

4h
6h
3h
4h
0dh
0ah

;iopb low address (output)
;iopb high address (output)

;read function
;write function
;recalibrate drive
;i/o finished mask
;carriage return
;line feed

message: xxk cp/m vers y.y
cr,lf,lf
1 20 1 ;sample memory size
1 k cp/m vers 1

vers/10+'0 1
,

1
•

1 ,vers mod 10+'0 1

cr,lf,0

signon message and go to ccp
mds boot initialized iobyte at 0003h)

sp,buff+80h
h,signon
prmsg ;print message
a ;clear accumulator
cdisk ;set initially to disk a
gocpm ;go to cp/m

wboot:; loader on track 0, sector 1, which will be skippe
; read cp/m from disk - assuming there is a 128 byt
; start.

wboot0:

lxi

mvi
push
;enter
lxi
call
qivi
call
mvi
call
mvi
call

sp,buff ;using dma - thus 80 thru ff ok f

c,retry ;max retries
b

here on error retries
b,cpmb ;set dma address to start of disk
setdma
c,0 ;boot from drive 0
seldsk
c,0
settrk ;start with track 0
c,2 ;start reading sector 2
setsec

read sectors, count nsects to zero
pop b ;10-error count
mvi b,nsects

42

4ael c5
4ae2 cdcl4b
4ae5 c2494b
4ae8 2a6c4c
4aeb 118000
4aee 19
4aef 44
4af0 4d
4afl cdbb4b
4af4 3a6b4c
4af7 fela
4af9 da054b

4afc 3a6a4c
4af f 3c
4b00 4f
4b01 cda74b
4b04 af

rdsec:

. ,

4b05 3c rdl:
4b06 4f
4b07 cdac4b
4b0a cl
4b0b 05
4b0c c2el4a

4b0f f3
4bl0 3el2
4bl2 d3fd
4bl4 af
4bl5 d3fc
4bl7 3e7e
4bl9 d3fc
4blb af
4blc d3f3

4ble 018000
4b21 cdbb4b

4b24 3ec3
4b26 320000
4b29 21034a
4b2c 220100
4b2f 320500
4b32 21063c
4b35 220600
4b38 323800
4b3b 2100f8
4b3e 223900

gocpm:

;read next sector
push b ;save sector count
call read
jnz booterr
lhld iod
lxi d,128
dad d

b,h

;retry if errors occur
;increment dma address
;sector size
;incremented dma address in hl

mov
mov
call
lda
cpi
jc
must
lda
inr
mov
call
xra
inr
mov
call
pop
dcr
jnz

c,l ;ready for call to set dma
setdma
ios ;sector number just read
26 ;read last sector?
rdl

be sector 26, zero and go to next track
iot ;get track to register a
a
c,a
settrk
a
a
c,a
setsec
b
b
rdsec

;ready for call

;clear sector number
;to next sector
;ready for call

;recall sector count
; done?

done with the load, reset default buffer
; (enter here from cold start boot)
enable rst0 and rst7
di
mvi
out
xra
out
mvi
out
xra
out

a,12h
revrt
a
intc
a,inte
intc
a
icon

;initialize command

;cleared
;rst0 and rst7 bits on

;interrupt control

set default buffer address to 80h
lxi b,buff
call setdma

reset monitor entry points
mvi a, jmp
sta 0
lxi h,wboote
shld l ;jmp wboot at location 00
sta 5
lxi h,bdos
shld 6 ;jmp bdos at location 5

address

sta 7*8 ;jmp to mon80 (may have been chan
lxi h,mon80
shld 7*8+1
leave iobyte set

43

. previously selected disk was b, send parameter to ,
4b41 3a0400 lda cdisk :last logged disk number
4b44 4f mov c,a :send to ccp to log it in
4b45 fb ei
4b46 c30034 jmp cpmb

; . error condition occurred, print message and retry ,

4b49 cl
4b4a 0d
4b4b ca524b

4b4e cs
4b4f c3c94a

4b52 215b4b
4b55 cdd34b
4b58 c30fff

booterr:

;

. ,
booter0: . ,

. ,
bootmsg:

pop b :recall counts
dcr C
jz booter0
try again
push b
jmp wboot0

otherwise too many retries
lxi h,bootmsg
call prmsg
jmp rmon80 :mds hardware monitor

4b5b 3f626f4 db '?boot' ,0

. ,
const: ;console status to reg-a
; (exactly the same as mds call)

4b61 c312f8 jmp csts

4b64 cd03f8
4b67 e67f
4b69 c9

conin: ;console character to reg-a
call ci
ani 7fh ;remove parity bit
ret

;
conout: ;console character from c to console out

4b6a c309f8 jmp co

4b6d c30ff8

4b70 af
4b71 c9

4b72 c30cf8

list:

. ,
listst:

;
punch:

;

;list device out
(exactly the same as mds call)
jmp lo

;return list status
xra
ret

a
;always not ready

;punch device out
(exactly the same as mds call)
jmp po

reader: ;reader character in to reg-a
; (exactly the same as mds call)

4b75 c306f8 jmp ri . ,
home: ;move to home position

44

• 4b78 0e00
4b7a c3a74b

4b7d 210000
4b80 79
4b81 fe04
4b83 d0

4b84 e602
4b86 32664c
4b89 79
4b8a e601
4b8c b7
4b8d ca924b
4b90 3e30 .

4b92 47
4b93 21684c
4b96 7e
4b97 e6cf
4b99 b0
4b9a 77
ag~s ~i00
4b9e 29
4b9f 29
4ba0 29
4bal 29
4ba2 11334a
4ba5 19
4ba6 c9

4ba7 216a4c
4baa 71
4bab c9

4bac 216b4c
4baf 71
4bb0 c9

4bbl 0600
4bb3 eb
4bb4 09
4bb5 7e
4bb6 326b4c
U~Bi g~

.
I

.
I

treat as track 00 seek
mvi c,0
jmp settrk

seldsk: ;select disk given by register c
lxi h,0000h ;return 0000 if error
mov a,c
cpi ndisks ;too large?
rnc ;leave hl = 0000

ani
sta
mov
ani
ora
jz
mvi

10b ;00 00 for drive 0,1 and 10 10 fo
dbank ;to select drive bank
a,c ;00, 01, 10, 11
lb ;mds has 0,1 at 78, 2,3 at 88
a ;result 00?
setd rive
a,00110000b ;selects drive 1 in bank

setdr ive:
mov
lxi
mov
ani
ora
mov

b,a
h,iof
a,m

;save the function
;io function

11001111b ;mask out disk number
b ;mask in new disk number
m,a ;save it in iopb

.
I

ill~¥
dad
dad
dad
dad
lxi
dad
ret

~~0 ;hl=disk number
h ;*2
h ;*4
h ;*8
h ;*16
d,dpbase
d ;hl=disk header table address

settrk: ;set track address given by c
lxi h,iot
mov m,c
ret

setsec: ;set sector number given by c

sectran:

;

lxi h,ios
mov m,c
ret

mvi
xchg
dad
mov
sta
mov ret

;translate sector be using table at de
b,0 ;double precision sector number i

b
a,m
ios
l,a

;translate table address to hl
;translate(sector) address
;translated sector number to a

;return sector number in 1

setdma: ;set dma address given by regs b,c

45

4bbb 69
4bbc 60
4bbd 226c4c
4bc0 c9

4bcl
4bc3
4bc6
4bc9

0e04
cde04b
cdf04b
c9

4bca 0e06
4bcc cde04b
4bcf cdf04b
4bd2 c9

4bd3 7e
4bd4 b7
4bd5 c8

4bd6 es
4bd7 4f
4bd8 cd6a4b
4bdb el
4bdc 23
4bdd c3d34b

4be0
4be3
4be4
4be6
4be7

4be8
4bea
4bed
4bee
4bef

21684c
7e
e6f8
bl
77

e620
216b4c
b6
77
c9

4bf0 0e0a

4bf2 cd3f4c
4bf5 cd4c4c

4bf8 3a664c

.
I

read:

.
I

;
write:

mov
mov
shld
ret

;read
mvi
call
call
ret

;disk
mvi
call
call
ret

l,c
h,b
iod

next disk
c, readf
setfunc
waitio

record (assuming disk/trk/sec/dma
;set to read function

;perform read function
;may have error set in reg-a

write function
c,writf
setfunc ;set to write function
waitio

;may have error set

; utility subroutines
prmsg: ;print message at h,l to 0

.
I

setfunc: .
I

;
waitio:

rewai t:

mov
ora
rz

a,m
a ; zero?

more to print
push h
mov
call
pop
inx
jmp

set
lxi
mov
ani
ora
mov
the
mask
ani
lxi
ora
mov
ret

mvi

c,a
conout
h
h
prmsg

function for next i/o (command in reg-c)
h,iof ;io function address
a,m ;get it to accumulator for maskin
11111000b ;remove previous command
c ;set to new command
m,a ;replaced in iopb

mds-800 controller reg's disk bank bit in sec
the bit from the current i/o function

00100000b ;mask the disk select bit
h,ios :address the sector selec
m :select proper disk bank
m,a ;set disk select bit on/o

c,retry :max retries before perm error

start the i/o function and wait for completion
call intype ;in rtype
call inbyte ;clears the controller

lda dbank ; set bank flags

46

4bfb b7
4bfc 3e67
4bfe 064c
4c00 c20b4c
4c03 d379
4c05 78
4c06 d37a
4c08 c3104c

4c0b d389
4c0d 78
4c0e d38a

. ,
iodrl:

. ,

ora
mvi
mvi
jnz
out
mov
out
jmp

a
a, iopb
b,iopb
iodrl
ilow
a,b
ihigh
wait0

: drive bank 1

:zero if drive 0,1 and nz
and 0ffh :low address for iopb
shr 8 :high address for iopb

:drive bank l?
:low address to controlle

:high address
:to wait for complete

out ilow+l0h :88 for drive bank 10
mov a,b
out ihigh+l0h

4cl0 cd594c wait0:
4cl3 e604

call
ani
jz

instat
iordy
wait0

:wait for completion
:ready?

4cl5 cal04c

4cl8 cd3f4c

4clb fe02
4cld ca324c

4c20 b7
4c21 c2384c

4c24 cd4c4c
4c2 7 1 7
4c28 da324c
4c2b lf
4c2c e6fe
4c2e c2384c

4c31 c9

4c32 cd4c4c
4c35 c3384c

check io completion ok
call intype :must be io complete (00)
00 unlinked i/o complete, 01 linked i/o comple
10 disk status changed 11 (not used)
cpi 10b :ready status change?
j z wready

: must be 00 in the accumulator
ora
jnz

check
call
ral
jc
rar
ani
jnz

a
werror

i/o error bits
inbyte

wready

11111110b
werror

:some other condition, re

:unit not ready

:any other errors?

read or write is ok, accumulator contains zero
ret

:
wready: :not

call
jmp . ,

ready, treat as error for now
inbyte :clear result byte
trycount

werror: :return hardware malfunction (ere, track, seek, e
: the mds controller has returned a bit in each pos
: of the accumulator, corresponding to the conditio
: 0 - deleted data (accepted as ok above)
: 1 - ere error
: 2 - seek error
: 3 - address error (hardware malfunction)
: 4 - data over/under flow (hardware malfunct
: 5 - write protect (treated as not ready)
: 6 - write error (hardware malfunction)
: 1 - not ready

47

4c38 0d
4c39 c2f24b

4c3c 3e01
4c3e c9

4c3f 3a664c
4c42 b7
4c43 c2494c
4c46 db79
4c48 c9
4c49 db89
4c4b c9

4c4c 3a664c
4c4f b7
4c50 c2564c
4c53 db7b
4c55 c9
4c56 db8b
4c58 c9

4c59 3a664c
4c5c b7
4c5d c2634c
4c60 db78
4c62 c9
4c63 db88
4c65 c9

4c66 00

4c67
4c68
4c69
4c6a
4c6b
4c6c

80
04
01
02
01
8000

.
' ;

(accumulator bits are numbered 7 6 5 4 3 2 1 0)

it may be useful to filter out the various condit
but we will get a permanent error message if it i
recoverable. in any case, the not ready conditio
treated as a separate condition for later improve

trycoun t:
; register c contains retry count, decrement 'til z

dcr c
jnz rewait ;for another try

; cannot recover from error
mvi a,l ;error code
ret

;
; intype, inbyte, instat read drive bank 00 or 10
intype: lda dbank

ora a
jnz intypl ;skip to bank 10
in r type
ret

intypl: in
ret

;
inbyte: lda

ora
jnz
in
ret

inbytl: in
ret

;
instat: lda

ora
jnz
in
ret

instal: in
ret .

'

rtype+l0h

dbank
a
inbytl
rbyte

rbyte+l0h

dbank
a
instal
dstat

dstat+l0h

;78 for 0,1 88 for 2,3

; data areas (must be in ram}
dbank: db 0 ;disk bank 00 if drive 0,1

iopb:

iof:
ion:
iot:
ios:
iod:

10 if drive 2,3
;io
db
db
db
db
db
dw

parameter
80h
readf
1
offset
1
buff

block
;normal i/o operation
;io function, initial
;number of sectors to
;track number
;sector number
;io address

define ram areas for bdos operation

48

read
read

endef
4c6e+= begdat equ $ - 4c6e+ dirbuf: ds 128 ;directory access buffer
4cee+ alv0: ds 31
4d0d+ csv0: ds 16
4dld+ alvl: ds 31
4d3c+ csvl: ds lq
4d4c+ alv2: ds 31
4d6b+ csv2: ds 16
4d7b+ alv3: ds 31
4d9a+ csv3: ds 16
4daa+= enddat equ $
013c+= da tsiz equ $-begdat
4daa end

49

0014 =

0000 =
3400 =
3c06 =
4a00 =
0004 =
0003 =

;
;
msize

bias
ccp
bdos
bios
cdisk
iobyte

APPENDIX C: A SKELETAL CBIOS

skeletal cbios for first level of cp/m 2.0 altera

equ 20 ;cp/m version memory size in kilo

"bias" is address offset from 3400h for memory sy
than 16k (referred to as "b" throughout the text)

egu
equ
egu
equ
egu
equ

(msize-20)*1024
3400h+bias ;base of ccp
ccp+806h ;base of bdos
ccp+l600h ;base of bios
0004h ;current disk number 0=a, ••• ,15=p
0003h ;intel i/o byte

4a00
002c =

org
nsects equ

bios ;origin of this program
($-ccp)/128 ;warm start sector count

4a00 c39c4a
4a03 c3a64a wboote:
4a06 c3114b
4a09 c3244b
4a0c c3374b
4a0f c3494b
4al2 c34d4b
4al5 c34f4b
4al8 c3544b
4alb c35a4b
4ale c37d4b
4a21 c3924b
4a24 c3ad4b
4a27 c3c34b
4a2a c3d64b
4a2d c34b4b
4a30 c3a74b

4a33 734a00 dpbase:
4a37 000000
4a3b f04c8d
4a3f ec4d70

4a43 734a00
4a47 000000
4a4b f04c8d
4a4f fc4d8f

4a53 734a00
4a57 000000
4a5b f04c8d
4a5f 0c4eae

.
I

jump
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp

vector for
boot
wboot
const
conin
conout
list
punch
reader
home
seldsk
settrk
setsec
setdma
read
write
listst
sectran

individual subroutines
;cold start
;warm start
;console status
;console character in
;console character out
;list character out
;punch character out
;reader character out
;move head to home positi
;select disk
;set track number
;set sector number
;set dma address
;read disk
;write disk
;return list status
;sector translate

fixed data tables for four-drive standard
ibm-compatible 8" disks
disk parameter header for disk 00
dw trans,0000h
dw 0000h,0000h
dw dirbf,dpblk
dw chk00,all00
disk parameter header for disk 01
dw trans,0000h
dw 0000h,0000h
dw dirbf,dpblk
dw chk01,all01
disk parameter header for disk 02
dw trans,0000h
dw 0000h,0000h
dw dirbf,dpblk
dw chk02,all02

50

4a63
4a67
4a6b
4a6f

734a00
000000
f04c8d
lc4ecd

t~11 ~g~~~g trans:
4a7b 170309
4a7f 150208
4a83 14la06
4a87 121804
4a8b 1016

4a8d la00
4a8f 03
4a90 0 7
4a91 00
4a-92 f 200
4a94 3f00
4a96 c0
4a97 00
4a98 1000
4a9a 0200

4a9c af
4a9d 320300
4aa0 320400
4aa3 c3ef4a

4aa6 318000
4aa9 0e00
4aab cd5a4b
4aae cd544b

4abl 062c
4ab3 0e00
4ab5 1602

4ab7 210034

4aba cs
4abb dS
4abc es
4abd 4a
4abe cd924b
4acl cl

;
dpblk:

. ,
boot:

. ,
wboot:

. ,

load!:

disk
dw
aw
dw
dw

parameter header
trans,0000h
0000h,0000h
dirbf,dpblk
chk03,all03

for disk 03

a c, o
01

iu

I' 0

sector translate vector

38
db
db
db
db
db

;disk
dw
db
db
db
dw
dw
db
db
dw
dw

25~5~!1~17
23,3,9,15
21,2,8,14
20,26,6,12
18,24,4,10
16,22

!~i8t8f~ ~~~:1:~
;sectors 9,10,11,12
;sectors 13,14,15,16
;sectors 17,18,19,20
;sectors 21,22,23,24
;sectors 25,26

parameter
26
3
7

block, common to all disks
;sectors per track
;block shift factor
;block mask

0
242
63
192
0
16
2

;null mask
;disk size-1
;directory max
;alloc 0
;alloc 1
;check size
;track offset

end of fixed tables

individual subroutines to perform each function
;simplest case is to just perform parameter initi
xra a ;zero in the accum
sta iobyte ;clear the iobyte
sta cdisk ;select disk zero
jmp gocpm ;initialize and go to cp/

; simplest case
lxi sp, 80.h
mvi c,0
call seldsk
call home

is to read the disk until all sect
;use space below buffer f
;select disk 0

;go to track 00

mvi b,nsects ;b counts# of sectors to
mvi c,0 ;c has the current track
mvi d,2 ;d has the next sector to
note that we begin by reading track 0, sector 2 s
contains the cold start loader, which is skipped
lxi h,ccp ;base of cp/m (initial lo
;load
push
push
push
mov
call
pop

one
b
d

more sector

h
c,d
setsec
b

51

;save sector count, current
;save next sector to read

track

;save dma address
;get sector address
;set sector address
;recall dma address

to register c
from register
to b,c

4ac2 cS
4ac3 cdad4b

4ac6 cdc34b
4ac9 fe00
4acb c2a64a

4ace el
4acf 118000
4ad2 19
4ad3 dl
4ad4 cl
4ad5 05
4ad6 caef4a

4ad9 14
4ada 7a
4adb felb
4add daba4a

4ae0 1601
4ae2 0c

4ae3 cs
4ae4 as
4ae5 es
4ae6 cd7d4b
4ae9 el
4aea dl
4aeb cl
4aec c3ba4a

4aef 3ec3
4afl 320000
4af4 21034a
4af7 220100

4afa 320500
4afd 21063c
4b00 220600

4b03 018000
4b06 cdad4b

4b09 fb
4b0a 3a0400
4b0d 4f
4b0e c30034

.
I

gocpm:

.
I

push
call

drive
call
cpi
jnz

b ;replace on stack for later recal
setdma ;set dma address from b,c

set to 0,
read
00h
wboot

track set, sector set, dma addres

;any errors?
;retry the entire boot if an erro

no error, move to next sector
;recall dma address
;dma=dma+l28

pop h
lxi d,128
dad d ;new dma address is in h,l

;recall sector address pop d
pop b ;recall number of sectors remaini

;sectors=sectors-1 dcr b
j z gocpm ;transfer to cp/m if all have bee

more sectors remain to load, check for track chan
inr d
mov
cpi
jc

a,d
27
loadl

;sector=27?, if so, change tracks

;carry generated if sector<27

end of current track, go to next track
mvi d,l ;begin with first sector of next
inr c ;track=track+l

save
push
push
push
call
pop
pop
pop
jmp

register state, and change tracks
b
d
h
settrk ;track address set from register
h
d
b
loadl ;for another sector

end of load operation, set parameters and go to c

mvi
sta
lxi
shld

sta
lxi
shld

lxi
call

ei
lda
mov
jmp

a,0c3h ;c3 is a jmp instruction
0 ;for jmp to wboot
h,wboote ;wboot entry point
1 ;set address field for jmp at 0

5 ;for jmp to bdos
h,bdos ;bdos entry point
6 ;address field of jump at 5 to bd

b,80h ;default dma address is 80h
setdma

cdisk
c,a
ccp

52

;enable the interrupt system
;get current disk number
;send to the ccp
;go to cp/m for further processin

4bll
4b21 3e00
4b23 c9

4b24
4b34 e67f
4b36 c9

4b3 7 79
4b38
4b48 c9

4b49 79
4b4a c9

4b4b af
4b4c c9

4b4d 79
4b4e c9

4b4f 3ela
4b51 e67f
4b53 c9

4b54 0e00
4b56 cd7d4b
4b59 c9

4b5a
4b5d
4b5e
4b61

210000
79
32ef4c
fe04

.
I . ,
.
I

const:

simple i/o handlers (must be filled in by user)
in each case, the entry point is provided, withs
to insert your own code

;console status, return 0ffh if character ready,
ds 10h ;space for status subroutine
mvi a,00h
ret

conin: ;console character into register a
ds 10h ;space for input routine
ani 7fh ;strip parity bit
ret

conout: ;console character output from register c

;
list:

.
I

mov a,c ;get to accumulator
ds 10h ;space for output routine
ret

;list character from register c
mov a,c ;character to register a
ret ;null subroutine

listst: ;return list status (0 if not ready, 1 if ready)
xra a ;0 is always ok to return
ret

;
punch: ;punch character from register c

;
;

mov a,c ;character to register a
ret ;null subroutine

reader: ;read character into register a from reader devic
;enter end of file for now (repla
;remember to strip parity bit

.
I

home:
;

;

mvi a,lah
ani 7fh
ret

i/o drivers for the disk follow
for now, we will simply store the parameters away
in the read and write subroutines

;move to the track 00 position of current drive
translate this call into a settrk call with param
mvi c,0 ;select track 0
call settrk
ret ;we will move to 00 on first read

seldsk: ;select disk given by register c
lxi h,0000h ;error return code
mov a,c
sta diskno
cpi 4 ;must be between 0 and 3

53

4b63 d0

4b64

4b6e 3aef4c
4b71 6f
4b72 2600
4b74 29
4b75 29
4b76 29
4b77 29
4b78 11334a
4b7b 19
4b7c c9

4b7d 79
4b7e 32e94c
4b81
4b91 c9

4b92 79
4b93 32eb4c
4b96
4ba6 c9

4ba7
4ba8
4ba9
4baa
4bac

eb
09
6e
2600
c9

4bad 69
4bae 60
4baf 22ed4c
4bb2
4bc2 c9

4bc3
4bd3 c3e64b

4bd6

.
I

.
I

;
settrk:

;
setsec:

;

rnc
disk number is

;no carry if 4,5, •••
in the proper range

;space for disk select ds 10
compute proper
lda diskno

disk parameter header address

mov l,a ;l=disk number 0,1,2,3
mvi h,0 ;high order zero
dad h ;*2
dad h ;*4
dad h ;*8
dad h ;*16 (size of each header)
lxi d,dpbase
dad d ;hl=.dpbase(diskno*l6)
ret

;set
mov
sta
ds
ret

;set
mov
sta
ds
ret

track given by register c
a,c
track
10h ;space for track select

sector given by register c
a,c
sector
10h ;space for sector select

sectran:
;translate
;translate
xchg

the sector given by be
table given by de

;hl=.trans
;hl=.trans(sector)
;l = trans(sector)
;hl= trans(sector)
;with value in hl

using the

;
setdma:

;
read: .
I

.
I

dad b
mov l,m
mvi h,0
ret

;set
mov
mov
shld
ds
ret

dma address given by registers band c
l,c ;low order address
h,b ;high order address
dmaad ;save the address
10h ;space for setting the dma addres

;perform read operation (usually this is similar
so we will allow space to set up read command, th
common code in write)
ds 10h ;set up read command
jmp wai~io ;to perform the actual i/o

write: ;perform a write operation

.
I

ds 10h ;set up write comman~

waitio: ;enter here from read and write to perform the ac
; operation. return a 00h in register a if the ope
; properly, and 01h if an error occurs during the r

54

•

4be6
4ce6 3e01
4ce8 c9

4ce9
4ceb
4ced
4cef

4cf0 =
4cf0
4d70
4d8f
4dae
4dcd
4dec
4dfc
4e0c
4elc

4e2c =
013c =
4e2c

.
I

in this case, we have saved the disk number in 'd
the track number in 'track' (0-76
the sector number in 'sector' (1-
the dma address in 'dmaad' (0-655
;space reserved for i/o drivers
;error condition

.
I

ds 256
mvi a,1

.
I

ret ;replaced when filled-in

; the remainder of the cbios is reserved uninitiali
; data area, and does not need to be a part of the
; system memory image (the space must be available,
; however, between "begdat" and "enddat") • .
I

track: ds
sector: ds
dmaad: ds
diskno: ds .
I

;
begdat
dirbf:
al 100:
all01:
al 10 2:
al 103:
chk00:
chk01:
chk02:
chk03:
;
enddat
da tsiz

scratch
equ
ds
ds
ds
ds
ds
ds
ds
ds
ds

egu
equ
end

2
2
2
1

;two bytes for expansion
;two bytes for expansion
;direct memory address
;disk number 0-15

ram area for bdos use
$;beginning of data area
128 ;scratch directory area
31 ;allocation vector 0
31 ;allocation vector 1
31 ;allocation vector 2
31 ;allocation vector 3
16 ;check vector 0
16 ;check vector 1
16 ;check vector 2
16 ;check vector 3

$;end of data area
$-begdat;size of data area

55

0100

0014 =

0000 =
3400 =
3c00 =
4a00 =

APPENDIX D: A SKELETAL GETSYS/PUTSYS PROGRAM

; combined getsys and putsys programs from Sec 4.
; Start the programs at the base of the TPA

msize

org

egu

0100h

20 ; size of cp/m in Kbytes

; ~bias" is the amount to add to addresses for> 20k
; (referred to as "b" throughout the text)

bias
ccp
bdos
bios

.
I

i
i

gstart:

egu
equ
equ
equ

(msize-20)*1024
3400h+bias
ccp+0800h
ccp+l 600h

getsys programs tracks 0 and 1 to memory at
3880h + bias

register
a
b
C

d,e
h,l
sp

usage
(scratch register)
track count (0 ••• 76)
sector count (1 ••• 26)
(scratch register pair)
load address
set to stack address

0100 318033 lxi sp,ccp-0080h
h,ccp-0080h
b,0

; start of getsys
; convenient plac
; set initial loa
; start with trac
; read next track
; each track star

0103 218033 lxi
0106 0600 mvi

rd$trk:
0108 0e01 mvi

010a cd0003
010d 118000
0110 19
0111 0c
0112 79
0113 felb
0115 da0a01

rd$sec:
call
lxi
dad
inr
mov
cpi
jc

c,l

read$sec
d,128
d
C

a,c
27
rdsec

; get the next se
; offset by ones

(hl=hl+l 28)
; next sector
; fetch sector nu

and see if la .
I

; <, do one more

; arrive here at end of track, move to next track

0118 04
0119 78
011a fe02
011c da0801

0llf fb
0120 76

inr
mov
cpi
jc

b
a,b
2
rd$trk

; track= track+!
; check for last
; track= 2?
; <, do another

; arrive here at end of load, halt for lack of anything b

ei
hlt

56

0200

0200 318033
0203 218033
0206 0600

0208 0e01

020a cd0004
020d 118000
0210 19
0 211 0c
0 212 79
0213 felb
0215 da0a02

0 218 04
0219 78
021a fe02
021c da0802

02lf fb
0220 76

0300

0300 cs
0301 es

0302

0342 el
0343 cl

; putsys program, places memory image starting at
; 388~h + bias back to tracks 0 and 1
; start this program at the next page boundary

org

put$sys:
lxi
lxi
mvi

wr$trk:
mvi

wr$sec:
call
lxi
dad
inr
mov
cpi
jc

($+0100h) and 0ff00h

sp,ccp-0080h
h,ccp-0080h
b,0

c,l

write$sec
d,128
d
C
a,c
27
wr$sec

; convenient plac
; start of dump
; start with trac

; start with sect

; write one
; length of
; <hl>=<hl>
; <c> = <c>
; see if

secto
each
+ 128
+ 1

past end oft
; no, do another

; arrive here at end of track, move to next track

inr
mov
cpi
jc

b
a,b
2
wr$trk·

; track= track+l
; see if .
I last track
; no, do another

done with putsys, halt for lack of anything bette

ei
hlt

; user supplied subroutines for sector read and write

move to next page boundary

org ($+0100h) and 0ff00h

read$sec:
; read the next sector
; track in ,
; sector in <c>
; dmaaddr in <hl>

push
push

b
h

; user defined read operation goes here
ds 64

pop
pop

h
b

57

0344 c9 ret

0400 org ($+0100h) and 0ff00h . another page bo
'

write$sec:

. same parameters as read$sec '
0400 cs push b
0401 e5 push h

. user defined write operation goes here
' 0402 ds 64

0442 el pop h
0443 cl pop b
0444 c9 ret

. end of getsys/putsys program
'

0445 end

58

-

0000

0014 =

0000 =
3400 = - 4a00 =
0300 =
4a00 =
1900 =
0032 =

0000 010200
0003 1632
0005 210034

.
' .
' .
' ;
;
; .
' ; .
' .
' ;
; .
' ; .
' .
' .
' ;

APPENDIX E: A SKELETAL COLD START LOADER

this is a. sample cold start loader which, when modified
resides on track 00, sector 01 (the first sector on the
diskette). we assume that the controller has loaded
this sector into memory upon system start-up (this pro
gram can be keyed-in, or can exist in read/only memory
beyond the address space of the cp/m version you are
running). the cold start loader brings the cp/m system
into memory at "loadp" (3400h +"bias"). in a 20k
memory system, the value of "bias" is 0000h, with large
values for increased memory sizes (see section 2). afte
loading the cp/m system, the clod start loader branches
to the "boot" entry point of the bios, which begins at
"bios" + "bias." the cold start loader is not used un
til the system is ?Owered U? again, as long as the bios
is not overwritten. the origin is assumed at 0000h, an
must be changed if the controller brings the cold start
loader into another area, or if a read/only memory area
is used.

org 0 ; base of ram in cp/m

msize equ 20 . min mem size in kbytes ,

bias
ccp
bios
biosl
boot
size
sects

;

cold:

lsect:

; .
'

egu (msize-20)*1024 ; offset from 20k system
equ 3400h+bias . base of the ccp ' equ ccp+1600h ; base of the bios
equ 0300h . length of the bios ' equ bios
egu bios+biosl-ccp ; size of cp/m system
equ size/128 . # of sectors to load '
begin the load operation

lxi b,2 . b=0, c=sector 2 ' mvi d,sects ; d=# sectors to load
lxi h,ccp ; base transfer address

; load the next sector

insert inline code at this point to
read one 128 byte sector from the
track given in register b, sector
given in register c,
into the address given by <hl>

; branch to location "cold" if a read error occurs

59

0008 c36b00
000b

006b 15
006c ca004a

006f 318000
0072 39

0073 0c
0074 79
0075 felb
0077 da0800

007a 0e01
007c 04
007d c30800
0080

.
I .
I .
I

;

*
*
*

user supplied read operation goes here •••

jmp
ds

past$patch
60h

; remove this when patche

past$patch:
; go to next

dcr
sector if load is incomplete

d ; sects=sects-1

;
;

jz boot ; head for the bios

more sectors to load

; we aren't using a stack, so use <sp> as scratch registe
; to hold the load address increment

lxi
dad

inr
mov
cpi
jc

sp,128
sp

C
a,c
27
lsect

; 128 bytes per sector
; <hl> = <hl> + 128

; sector= sector+ 1

; last sector of track?
; no, go read another

; end of track, increment to next track

mvi
inr
jmp
end

c,l
b
lsect

60

; sector= 1
; track= track+ 1
; for another group
; of boot loader

•

APPENDIX F: CP/M DISK DEFINITION LIBRARY

1: ; CP/M 2.0 disk re-definition library
2: ;
3: ; Copyright (c) 1979
4: ; Digital R~~earch
5: ; Box 5 79
6: ; Pacific Grove, CA
7: ; 93950
8: ;
9 : ;

10: ;
11: ;
12: ;
13: ;
14: ;
15: ;
16: ;
17: ;
18: ;
19: ;
20: ;
21: ;
22: ;
23: ;
24: ;
25: ;
26: ;
27: ;
28: ;
29: ;
30: ;
31: ;
32: ;
33: ;
34: ;
35: ;
36: ;
37: ;
38: ;
39: ;
40: ;
41: ;
4 2: ;
43: ;
4 4: ;
45: ;
46: ;
4 7: ;
48: ;
49: ;
50: ;
51: ;
5 2: ;
5 3: ;

CP/M logic2l disk drives are defined using the
macros given below, where the sequence of calls
is:

disks a
diskdef ?arameter-list-0
diskdef ?arameter-list-1

diskdef oarameter-list-n
endef

where n is the number of logical disk drives attached
to the CP/M system, and oarameter-list-i defines the
characteristics of the ith drive (i=0.l, .••• n-l)

each parameter-list-i takes the form

where
dn
fsc
lsc
skf
bls
dks
dir
cks
ofs
[0]

dn,f~c,lsc, [skf] ,bls,dks,dir .cks,ofs, [0]

is the disk number 0,1, ••• ,n-l
is tile first sector number (usually 0 or 1)
is t~e last sector number on a track
is o~tional ttskew factord for sector translate
is tne data block size (1024,2048, ••• ,16384)
is tn(disk size in bls increments (word)
is tnE number of directory elements (word)
is the number of dir elements to checksum
is the number of tracks to skip (word)
is an optional 0 which forces !GK/directory en

for convenience, the form
dn,dm

defines disk dn as having the same characteristics as
a previously defined disk dm.

a standard four
disks
diskdef

dsk set
rept

dsk set
diskdef
endm
ender

drive CP/M system is defined by
4
0,l.26,6,1024,243,64,64,2
0
3
dsk+l
%dsk,0

the value of "begdat" at the end of assembly defines t

61

54:
55: ;
56: ;
5 7: ;
58: ;
59:
60:
61: ;

dskhdr 6 2:
63:
64:
65:
66:
67:
68:
69:
70:
71:
7 2:
7 3:
74:
75:
76:
77:
78:
79:
80:
81:
8 2:
83:
84:
85:
86:

.. , ,
dpe&dn:

. ,
disks .. , ,
ndisks
dpbase
; ;
dsknxt

dsknxt

. ,
dpbhdr
dpb&dn

. ,
ddb

8 7: ; ;
88:
89:
90:
91:

;
ddw

9 2: ; ;
93:
94:
95:
96: gcd
9 7: ; ;
9 8: ; ;
99: .. , ,

100:
101:
102:
103:
104:
105:
106:
107:
108:

gcdm
gcdn
gcdr

gcdx
gcdr

beginning of the uninitialize ram area above the bios,
while the valve of "enddat" defines the next location
following the end of the data area. the size of this
area is given by the value of "datsiz" at the end oft
assembly. note that the allocation vector will be qui
large if a large disk size is defined with a small blo
size.

dn macro
define
dw
dw

a single disk
xlt&dn,0000h
0000h,l:1000h
dirbuf,dpb&dn
csv&dn,alv&dn

header list
;translate table
;scratch area

aw
dw
endm

;dir buff,parm block
;check, alloc vectors

macro nd
define nd disks
set nd ;;for later reference
equ $
generate the

;base of disk parameter blocks
nd elements

set 0
rept nd
dskhdr %dsknxt
set dsknxc+l
endm
endm

macro
equ
endm

dn
$;disk parm block

macro data,comment
define a db s·tatement
db data
endm

macro
define
aw
endm

data,comment
a dw statement
data

macro -m,n

comment

comment

greatest common divisor of m,n
produces value gcdn as result
(used in sector translate table
set m ;;variable for
set n ;;variable for
set 0 ;;variable for
rept 65535
set gcdm/gcdn
set gcdm - gcdx*gcdn
if gcdr = 0
exitm
endif

62

generation)
m
n
r ~

,.

•

•
gcdm
gcdn

.
I

set
set
endm
endm

gcdn
gcdr

diskdef macro dn,fsc,lsc,skf,bls,dks,dir,cks,ofs,kl6

109:
110:
111:
112:
113:
114:
115: ; ;
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138: ;;
139:

; i
dpb&dn
als&dn
css&dn
xlt&dn

generate the set statements for later tables
if nul lsc
current disk dn
equ dpb&fsc
equ als&fsc
equ css&fsc
equ xlt&fsc

s~me as previous fsc
;2quivalent parameters
;same allocation vector size
;same checksum vector size
;same translate table

else
secmax set
sectors set
als&dn set

lsc-(fsc) ;;sectors 0 •.• secmax
secmax+l;;number of sectors
(dks)/8 ;;size of allocation vector
((dks) mod t,) ne 0

als&dn

css&dn
; ;
blkval
blkshf
blkmsk

- 140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150: ; ;
151:
152:
153:
154: ;;
155:
156:
157:
158: ;;
159:
160:
161:
162: ; ;
163:

blkshf
blkmsk
blkval

..
I I

blkval
extmsk

extmsk
olkval

extmsk

extmsk

dirrem

if
set
endif

als&dn+l

set (cks)/4 ;;number of checksum elements
generate the block shift value
set bls/128 ;;number of sectors/block
set 0 ;;counts right 0's in blkval
set 0 ;;£ills with l's from right
rept 16 ;;once for each bit ?Osition
if blkval=l
exitm
endif
otherwise, high order 1 not found yet
set blkshf+l
set (blkmsk shl 1) or 1
set blkval/2
endm
generate the extent mask byte
set bls/1024
set 0
rept 16
if blkval=l
exitm
endif

;;number of kilobytes/block
;;fill from right with l's

otherwise more to shift
set (extmsk shl 1) or 1
set blkval/2
endm
may be
if
set
endif
may be
if
set
endif

double byte ~!location
(dks) > 256
(extmsk shr 1)

optional [0] in last position
not nul kl6
kl6

now generate directory reservation bit vector
set dir ;;# remaining to process

63

164:
165:
166:
167:
168:
169:
170: ;;
171:
172:
173:
174:
175:
176:
177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:
190: ;;
l~l:
192:
193:
194:
1~5:
196:
197: ;;
198:
199:
200:
201:
202:
203: ; ;
204: ;;
205:
206:
207:
208:
209:
210:
211:
212:
213:
214:
215:
216:
217:
218:

dirbks
dirblk

. . , ,
dirblk

dirrem

dirrem

xlt&dn

xlt&dn

nxtsec
nxtbas

. . , ,
neltst

nelts
xlt&dn

nxtsec

nxtsec

nelts

set
set

bls/32
0

;;number of entries per block
;;fill with l's on each loop

rept
if
exitm
endif

16
dirrem=0

not complete~ iterate once again
shift right and add 1 high order bit
set (dirblk shr i) or 8000h
if dirrem > dirbks
set dirrem-di~bks
else
set
endif
endm

0

dpbhdr dn ;;ge~erate egu $
ddw %sectors,<;sec per track>
ddb %blkshf,<;blcck shift>
ddb %blkmsk,<;block mask>
ddb %extmsk,<;e~tnt mask>
ddw %(dks)-l,<;aisk size-1>
ddw %(dir)-l,<;airectory max>
ddb %dirblk shr 8,<;alloc0>
ddb %dirblk an& 0ffh,<;allocl>
ddw %(cks)/4,<;check size>
ddw %ofs,<;offset>
generate the translate table, if requested
if nul skf
equ 0
else
if
egu
else

skf = 0
0

;no xlate taole

;no xlate table

generate the translate taole
set 0 ; ;aext sector to fill
set 0 ;;mcves by one on overflow
gcd %sectors,skf
gcdn = gcd(sectors,skew)
set sectors/gcdn
neltst is number of elements to generate
before we overlap orevious elements
set neltst ;;~ounter
equ $;translate table
rept sectors ;;once for each sector
if sectors< 256
ddb %nxtsec+(fsc)
else
ddw
endif
set
if
set
endif
set
if

%nxtsec+(fsc)

nxtsec+(skf)
nxtsec >= sectors
nxtsec-sectors

nelts-1
nelts = 0

64

,.

•

•
219:
220:
2 21:
222:
223:
224:
225:
226:
227:
228:
229:
230:
231:
232:
233:
234:
235:
236:

nxtbas
nxtsec
nelts

.
I

defds
lab:

:
lds

.
I

endef
23 7:
238:
239:
240:
241:
242:
243:
244:
245:
246:
247:
248: ::
249:

. .
I I

begdat
dirbuf:
dsknxt

dsknxt

enddat
datsiz

set
set
set
endif
endm
endif
endif
endm

macro
ds
endm

macro
defds
endm

macro

nxtbas+l
nxtbas
neltst

::end of nul fac test
::end of nul bls test

lab,space
space

lb,dn,val
lb&dn,%val&dn

generate the nec~ssary ram data areas
equ $
ds 128 :directory access buffer
set 0
rept ndisks ::once for eacn disk
lds alv,%dsknxt,als
lds csv,%dsknxt,css
set dsknxt+l

$
$-begdat

endm
equ
equ
db 0
endm

at this point forces hex record

65

APPENDIX G: BLOCKING AND DEBLOCKING ALGORITHMS.

1: ;***
2: ;* *
3: ;* Sector Deblocking Algorithms for CP/M 2.0 *
4: ;* *
5: ;***
6: ;
7 : ;
8: smask
9 : ; ;

10:
11:
12:
13: ; ;
14:
15:
16:
17:
18:
19:
20:
21:

. .
I I

@y
@x

..
I I

@y
@x

utility macro to compute sector mask
macro hblk
compute log2(hblk), return @x as result
(2 ** @x = hblk on return)
set hblk
set 0
count right shifts of @y until= 1
rept 8
if @y = 1
exitm
endif
@y is
set
set
endm
endm

not 1, shift right one position
@y shr 1
@x + 1

2 2:
23:
24:
25:
26:
27:
28:
29:
30:
31:

;
·*** I

3 2:
33:
34:
35:
3 6:
37:
38:
39:
40:
41:
42:
4 3:
4 4:
45:
4 6:
47:
48:
49:
50:
51:

. * * I

. *
I CP/M to host disk constants * . * * I

·*** ,
blksiz
hstsiz
hstspt
hstblk
cpmspt
secmsk

secshf .
I

equ
equ
equ
equ
equ
equ
smask
egu

2048
512
20
hstsiz/128
hstblk * hstspt
hstblk-1
hstblk
@x

;CP/M allocation size
;host disk sector size
;host disk sectors/trk
;CP/M sects/host buff
;CP/M sectors/track
;sector mask
;compute sector mask
;log2(hstblk)

·*** I

. * ,

. *
I

. *
I

BOOS constants on entry to write
*
*
*

·*** I

wrall
wrdir
wrual

equ
equ
egu

0
1
2

;write to allocated
;write to directory
;write to unallocated

;
·*** I

·* * I

. *
I

. *
I

. *
I

The BOOS entry points given below show the
code which is relevant to deblocking only.

*
*
*

·*** I 5 2:
53: :

66

•

54:
55:
56:
57:
58:
59:
60:
61:
6 2:
6 3:
64:
65:
66:
6 7:
6 8:
69:
70:
71:
7 2:
7 3:
74:
75:
7 6:

. ,
dpbase . ,
boot:
wboot:

. ,
selds k:

set trk:
7 7: ;
78:
79:
80:
81:
8 2:
83:
8 4: ;
85:
86:

setsec:

8 7:
88:
89:
90:
91:
92:
93:
94:

. ,
setdma:

9 5:
96:
97: ;
98:
99:

sectran:

100:
101:
102:
10 3: ;

DISKDEF macro, or hand coded tables go here
equ $;disk pararn block base

;enter here on system boot to initialize
xra a ;0 to accumulator
sta hstact ;host buffer inactive
sta unacnt ;clear unalloc count
ret

;select disk
mov
sta
mov
mvi
rept
dad
endm
lxi
dad
ret

a,c
sekdsk
l,a
h,0
4
h

d,dpbase
d

;selected disk number
;seek disk number
;disk number to HL

;multiply by 16

;base of parrn block
;hl=.dpb(curdsk)

;set track given by registers BC
rnov h,b
rnov l,c
shld sek trk ; track to seek
ret

;set
rnov
sta
ret

sector given by register c
a,c
seksec ;sector to seek

;set dma address given by BC
mov h,b
rnov l,c
shld dmaadr
ret

;translate sector number BC
rnov h,b
mov l,c
ret

67

·*** , 104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143: ;
144:
145:
146:
14 7:
148:
149: ;
150: ;
151:
152:
153:
154:
155:
156:
15 7: ;
158: ;

. * ,

. * ,

. * ,
·* ,

The READ entry point takes the place of
the previous BIOS defintion for READ.

*
*
*
*

·*** ,
read:

;read the selected CP/M sector
mvi a,l
sta readop ;read operation
sta rs flag ;must read data
mvi a,wrual
sta wrtype ;treat as unalloc
jmp rwoper ;to perform the read . ,

·*** ,
·* ,
·* ,
·* ,
• * ,

The WRITE entry point takes the place of
the previous BIOS defintion for WRITE.

*
*
*
*

·*** ,
write:

. , . ,

chkuna:

;write the selected CP/M sector
xra
sta
rnov
sta
cpi
jnz

write
mvi
sta
lda
sta
lhld
shld
lda
sta

a
readop
a,c
wrtype
wrual
chkuna

to unallocated,
a,blksiz/128
unacnt
sekdsk
unadsk
sek trk
unatrk
seksec
unasec

;0 to accumulator
;not a read operation
;write type inc

;write unallocated?
:check for unalloc

set parameters
;next unalloc recs

:disk to seek
:unadsk = sekdsk

;unatrk = sectrk

;unasec = seksec

;check for write to unallocated sector
lda unacnt :any unalloc remain?
ora
jz

a
alloc :skip if not

more unallocated records remain
dcr a :unacnt = unacnt-1
sta unacnt
lda sekdsk
lxi h,unadsk
cmp
jnz

m
alloc

disks are the same

68

:same disk?

:sekdsk = unadsk?
:skip if not

•

noovf:

. ,
alloc:

lxi
call
jnz

tracks
lda
lxi
cmp
jnz

h,unatrk
sektrkcmp
alloc

are the same
seksec
h,unasec
m
alloc

match, move to next
inr m
mov
cpi
jc

a, m
cpmspt
noovf

;sektrk = unatrk?
;skip if not

;same sector?

;seksec = unasec?
;skip if not

sector for future ref
;unasec = unasec+l
;end of track?
;count CP/M sectors
;skip if no overflow

overflow to next track
mvi
lhld
inx
shld

m, 0
unatrk
h
unatrk

;unasec = 0

;unatrk = unatrk+l

;match found, mark as unnecessary read
xra
sta
jmp

a
rs flag
rwoper

;not an unallocated
xra
sta
inr
sta

a
unacnt
a
rs flag

;0 to accumulator
; rs flag = 0
;to perform the write

record, requires
;0 to accum
;unacnt = 0
;l to accum
;rsflag = 1

pre-read

159:
160:
161:
162: ;
16 3: ;
164:
165:
166:
167:
168: ;
169: ;
170:
171:
172:
173:
174: ;
175: ;
176:
177:
178:
179:
180: ;
181:
182:
183:
184:
185:
186:
187:
188:
189:
190:
191:
192:
193:
194:
195:
196:
197:
198:
199:
200:
201:
202:
203:
204:
205:
206:
207:
208:
209: ;
210: ;
211:
212:
213:

;
·*** ,
. * ,
• * ,
• * ,

Common code for READ and WRITE follows
*
*
*

·*** ,
rwoper:

;enter here to perform
xra
sta
lda
rept
ora
rar
endm
sta

a
erflag
seksec
secs hf
a

sekhst .

active host sector?
lxi h,hstact
mov
mvi

a,m
m,l

69

the read/write
;zero to accum
;no errors (yet)
;compute host sector

;carry= 0
;shift right

;host sector to seek

;host active flag

;always becomes 1

214:
215:
216: ;
217: ;
218:
219:
220:
221:
2 22: ;
2 23: ;
224:
225:
226:
227: ;
228: ;
229:
230:
231:
232:
233:
234:
235:
236:
237:
238:
239:
240:
241:
242:
243:
244:
245:
246:
247:
248:
249:
250:
251:
252:
253:
254:
255:
256:
257:
258:
259:
260:
261:
262:
263: ;
264:
265:
266:
267:
268:

. ,
nomatch:

. ,
filhst:

. ,
match:

ora
jz

a
filhst

;was it already?
;fill host if not

host
lda
lxi
crop
jnz

buffer active, same as seek buffer?

same
lxi
call
jnz

sekdsk
h ,hstdsk
m
nomatch

disk, same track?
h,hsttrk
sektrkcmp
nomatch

;same disk?
;sekdsk = hstdsk?

;sektrk = hsttrk?

same disk, same track, same buffer?
lda sekhst
lxi h,hstsec ;sekhst = hstsec?
crop
jz

m
match ;skip if match

;proper disk, but not correct sector
lda hstwrt ;host written?
ora
cnz

;may
lda
sta
lhld
shld
lda
sta
lda
ora
cnz
xra
sta

a
writehst

have to fill
sekdsk
hstdsk
sektrk
hsttrk
sekhst
hstsec
rs flag
a
readhst
a
hstwrt

;clear host buff

the host buffer

;need to read?

;yes, if 1
;0 to accum
;no pending write

;copy data to or from buffer
lda seksec ;mask buffer number
ani secmsk ;least signif bits
mov l,a ;ready to shift
mvi h,0 ;double count
rept 7 ;shift left 7
dad h
endm
hl has
lxi
dad
xchg
lhld

relative host buffer address

mvi

d,hstbuf
d

dmaadr
c,128

70

;hl = host address
;now in DE
;get/put CP/M data
;length of move

•

•
269:.
270:
271:

rwmove:

. ,

lda
ora
jnz

readop
a
rwmove

;which way?

;skip if read

write operation, mark and switch direction
mvi a, 1
sta hstwrt
xchg

;hstwrt = 1
;source/dest swap

;C initially 128, DE is source, HL is dest
ldax d ;socrce character
inx d
mov
inx
dcr
jnz

data
lda
cpi
lda
rnz

m,a
h
C
rwmove

has be·en moved
wrtype
wrdir
erflag

;to dest

;loop 128 times

to/from host buffer
;write type
;to directory?
;in case of errors
;no further processing

clear host buffer for directory write
;errors? ora

rnz
xra
sta
call
lda
ret

a

a
hstwrt
writehst
erflag

;skip if so
;0 to accum
;buffer written

2 7 2: ;
27 3: ;
274:
275:
276:
277: ;
278:
279:
280:
281:
282:
283:
284:
285:
286: ;
287: ;
288:
289:
290:
291:
292: ;
293: ;
294:
295:
296:
297:
298:
299:
300:
301:
302:
303:
304:
305:
306:
307:
308:
309:
310:
311:
312:
313:
314: ;
315:
316:
317:
318:
319:

·*** ,
·* I

•* I

. * I

Utility subroutine for 16-bit compare
*
*
*

·*** I

sektrkcmp:
;HL = .unatrk or .hsttrk, compare with sektrk

3 20: ;

xchg
lxi
ldax
crop
rnz
low
inx
inx
ldax
crop
ret

h,sektrk
d
rn

;low byte compare
;same?

bytes
d
h
d
rn

equal, test
;return if not

high ls

;sets flags

71

3 21:
322:
323:
324:
325:
326:
3 2 7:
328:
3 29:
330:
331:
-3 32:
333:
334:
335:
336:
337:
338:
339:
340:
341:
3 42:
343:
3 44:
345:
3 46:
347:
3 48:
349:
350:
351:
3 52:
353:
354:
355:
356:
3 5 7:
358:
359:
360:
361:
362:
363:
364:
365:
366:
3 6 7:
368:
369:
370:

·*** ' . *
' . *
' . * ' . *
'

WRITEHST performs the physical write to
the host disk, READHST reads the physical
disk.

*

*
·* * ' ·*** ' writehst:

.
' readhst:

.

:hstdsk = host disk#, hsttrk = host track#,
:hstsec = host sect#. write "hstsizh bytes
:from hstbuf and return error flag in erflag.
:return erflag non-zero if error
ret

:hstdsk = host disk#, hsttrk = host track#,
:hstsec = host sect#. read hhstsiz" bytes
:into hstbuf and return error flag in erflag.
ret

' ·***
' . * * ' :* Unitialized RAM data areas *
·* * ' ·*************************************ft*************** ' :
sekdsk: ds 1 :seek disk number
sektrk: ds 2 :seek track number
seksec: ds 1 :seek sector number .
' hstdsk: ds 1 :host disk number
hsttrk: as 2 :host track number
hstsec: ds 1 :host sector number .
' sekhst: ds 1 :seek shr secshf
hstact: ds 1 :host active flag
hstwr t: ds 1 :host written flag .
' unacnt: ds 1 :unalloc rec cnt
unadsk: ds 1 :last unalloc disk
unatrk: ds 2 :last unalloc track
unasec: ds 1 :last unalloc sector .
' e rflag: ds 1 :error reporting
rsflag: ds 1 :read sector flag
readop: ds 1 : l if read operation
wrtype: ds 1 :write operation type
dmaadr: ds 2 :last dma address
hstbuf: ds hstsiz :host buffer .
'

72

371:
3 72:
3 73:
3 74:
375:
376:

·*** ,
·* * ,
;* The ENDEF macro invocation goes . here *
. * * ,
·*** ,

end

73

•

•

Copyright (c) 1976, 1978 by Digital Research. All rights
reserved. No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any
form or by any means, ·electronic, mechanical, magnetic,
optical, chemical, manual or otherwise, without the prior
written permission of Digital Research, Post Office Box 579,
Pacific Grove, California 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any
particular purpose. Further, Digital Research reserves the
right to revise this publication and to make changes from
time to time in the content hereof without obligation of
Digital Research to notify any person of such revision or
changes.

•

Table of Contents

Section Page

I. INI'RODUCl'IOO • •••••••••••••••••••••••••••••••••••• 1
II. our <DMMANOO • •••••••••••••••••••••••••••••••••••• 3

1. The A (Asseni:>le) Command • •••••••••••••••••••• 3
2. The D (Display) Command •••••••••••••••••••••• 4 - 3. The F (Fill) Command ••••••••••••••••••••••••• 4
4. The G (Go) Comrnarrl ••••••••••••••••••••••••••• 4
5. The I (Input) Commarrl •••••••••••••••••••••••• 5
6. The L (List) Command ••••••••••••••••••••••••• 6
7. The M (Move) Commarrl • •••••••••••••••••••••••• 6
8. The R (Read) Comrnarrl • •••••••••••••••••••••••• 6
9. The S (Set) Commarrl • ••••••••••••••••••••••••• 7
10. The T (Trace) Command • ••••••••••••••••••••••• 7
11. The u (Untrace) Command •••••••••••••••••••••• 8
12. The X (Examine) Command •••••••••••••••••••••• 8

III. IMPLEMENI'ATIOO NOI'ES • •••••••••••••••••••••••••••• 9
rv. AN EXAMPLE • •••••••••••••••••••••••••••••••••••••• 10

•

" '

•

• CP/M Dynamic Debugging Tool (DOI')

User's Guide

I. Introduction.

The DOI' p:ogram allows dynamic interactive testing aro debugging of
programs generated in the CP/M environment. '!be debugger is initiated by
typing one of the following camnands at the CP/M Console Command level

DOI'
DDr filename.HEX
DDr filename.OOM

\tthere "filename" is the name of the p:ogram to be loaded aro tested. In both
cases, the DOI' program is brought into rrain memory in the place of the Console
Camnarrl Processor (refer to the CP/M Interface Guide for standard me100ry
organization), aro thus resides directly below the Basic Disk Operating System
portion of CP/M. The BClOO starting crldress, \tthich is located in the crldress
field of the JMP instruction at location SH, is altered to reflect the reduced
Transient Program Area size.

The second arrl third forms of the DOI' command shown above perform the same
actions as the first, except there is a sti::>sequent automatic load of the
specified HEX or OOM file. The action is identical to the sequence of
commarrls

DDr
!filename.HEX or !filename.COM
R

where the I arrl R camnands set up aro read the specified program to test (see
the explanation of the I and R commands below for exact details).

Upon initiation, DOI' prints a sign-on message in the format

nnK DDl'-s VER m.m

where nn is the rne100ry size (which must rratch the CP/M system being used) , s
is the hardware system which is assumed, corresponding to the codes

D Digital Research standard version
M MOO version
I n-5AI standard version
O Qnron systems
S Digital Systems standard version

arrl m.m is the revision nurrber.

1

Followi03 the sign on nessage, oor pranpts the operator with the dlaracter
"-" aoo waits for input canmands fran the console. '!'he q,erator can ty~ any
of several single dlaracter canmands, terminated by a carriage return to
execute the camnaoo. F.ach line of input can be line-edited using the standard
CP/M controls

rubout
ctl-U
ctl-C

remove the last dlaracter ty~
remove the entire line, ready for re-typing
system reboot

'Any camnaoo can be up to 32 characters in length (an automatic carriage return
is inserted as the 33rd character), \tbere the first character determines the
camnaoo ty~

A enter assembly language memonics with operands
D display memory in hexadecimal and ASCII
F fill nemory with constant data
G begin execution with optional breaki:x,ints
I set up a standard input file control block
L list nemory using assembler memonics
M rove a nemory segment fran source to destination
R read program for subsequent testing
S substitute nemory values
T trace IX"ogram execution
U ll'ltraced program ronitoring
X examine and optionally alter the CPU state

The canmaoo character, in oome cases, is followed by zero, one, two, or three
hexadecimal values \tbich are separated by canmas or single blank dlaracters.
All DD!' numeric ootµit is in hexadecimal form. In all cases, the canmands are
not executed ll'ltil the carriage return is ty~ at the end of the canmand.

At arTf !X)int in the debug run, the q,erator can stop execution of oor
using either a ctl-C or G0 (jmp to location 0000H) , aoo save the current
memory image using a SAVE canmand of the form

SAVE n filename.COM

where n is the ru.urber of p:tges (256 byte blocks) to be saved on disk. The
mmber of blocks can be determined by taking the high order byte of the top
load oodress aoo converting this nunber to decimal. For example, if the
highest oodress in the Transient Program Area is 1234H then the nunt>er of
pages is 12H, or 18 in decimal. Thus the q,erator could ty~ a ctl-C during
the debug run, returning to the Console Processor level, followed by

SAVE 18 X.COM

The nemory image is saved as X.COM on the diskette, aoo can be directly
executed by simply typing the name x. If further testing is required, the
memory image can be recalled by typing

2

•·

•

•

•

DD!' X.C'OM

which reloads p:eviously saved p:ogram fran loaction 100H through p:lge 18
(12FFH) • The rradline state is not a p:lrt of the COM file, am thus the
program must be restarted fran the beginning in order to properly test it.

I I. DDI' CDMMANOO.

The irrli vidual canrrams are given below in some detail. In each case, the
operator must wait for the µ:-anpt character (-) before entering the command.
If control is p:iSsed to a p:ogram under test, am the p:ogram has not reached
a breakp:>int, control can be returned to DDI' by executing a RST 7 fran the
front p:lnel (note that the rubout key should be used instead if the µ:-ogram is
executing a T or U canrram) • In the explanation of each command, the command
letter is smwn in some cases with nurrbers separated by canrras, \lbere the
nurcbers are represented by lower case letters. 'lbese nurcbers are always
assumed to be in a hexadecirral radix, am fran one to four digits in length
(longer rurrbers will be automatically truncated on the right).

Many of the canrrands operate up:>n a "CPU state" which corresponds to the
program under test. The CPU state holds the registers of the µ:-ogram being
debugged, and initially contains zeroes for all registers and flags except for
the p:ogram counter (P) and stack µ:>inter (S) , \lbich default to 100H. '!he
program counter is sli:>sequently set to the starting crldress given in the last
record of a HEX file if a file of this form is loaded (see the I and R
canrrams) •

1. The A (Asserrble) Command. DD!' allows inline asserrbly language to be
inserted into the current memory image using the A canmand which takes the
form

As

where s is the hexadecirral starting crldress for the inline asserrbly. DD!'
pranpts the console with the crldress of the next instruction to fill, and
reads the console, looking for asserrbly language nnemonics (see the Intel 8080
Asserrbly language Reference Card for a list of nnemonics), followed by
register references and operands in absolute hexadecirral form. Each sucessive
load crldress is p: inted before reading the console. '!he A command terminates
when the first enpty line is input fran the console.

Upon canpletion of asserrbly language input, the operator can review the
memory segment using the DDI' disasserrbler (see the L command).

Note that the asserrbler/disasserrbler p:>rtion of DDI' can be overlayed by
the transient p:ogram being tested, in \lbich case the DDI' program responds
with an error condition \lben the A and L canmands are used (refer to Section
IV) •

3

2. The D (Display) COmmarrl. The D canmarrl allows the operator to view
the contents of IreJrory in hexadecimal arrl ASCII formats. The forms are

D
OS
Ds,f

In the first case, memory is displayed fran the current display oodress
(initially 100H), arrl continues for 16 display lines. E:ach display line takes
the form smwn below

aaaa bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb cccccccccccccccc

where aaaa is the display oodress in hexadecimal, arrl bb represents data
present in nemory starting at aaaa. The ASCII characters starting at aaaa are
given to the right (represented by the sequence of c· s), \\here non-graphic
characters are i;rinted as a ~riod (.) synbol. Note that both UR)er arrl lower
case alphabetics are displayed, arrl thus will appear as uR)er case synools on
a console device that supports only u:wer case. E:ach display line gives the
values of 16 bytes of data, except that the first line displayed is truncated
so that the next line begins at an oodress \\hich is a multiple of 16.

The second form of the D caranarrl smwn above is similar to the first,
except that the display oodress is first set to address s. The third form
causes the display to continue fran oodres$ s through oodress f. In all
cases, the display address is set to the first address not displayed in this
canrnarrl, so that a continuing display can be accanplished by issuing
successive D canrnarrls with no explicit addresses.

Excessively long displays can be aborted by pushing the rubout key.

3. The F (Fill) Conunarrl. The F caranarrl takes the form

Fs,f,c

where s is the starting address, f is the final crldress, arrl c is a
hexadecimal byte constant. The effect is as follows: oor stores the constant
c at oodress s, increments the value of s arrl tests against f. If s exceeds f
then the cperation terminates, otherwise the cperation is repeated. Thus, the
fill canrnarrl can be used to set a memory block to a specific constant value.

4. The G (Go) COmmarrl. Program execution is started using the G cornand,
with up to two q>tional breakpoint oodresses. The G commarrl takes one ot the
forms

G
Gs
Gs,b

4

•

•

•

Gs,b,c
G,b
G,b,c

The first form starts execution of the program under test at the current value
of the i;rogram counter in the current machine state, with no breakpoints set
(the only way to regain control in DOI' is through a RST 7 execution). The
current i;rogram counter can be viewed by typing an X or XP command. The
second form is similar to the first except that the program counter in the
current machine state is set to address s before execution begins. The third
form is the same as the second, except that program execution stops when
address b is encountered (b must be in the area of the program under test).
The instruction at location b is not executed when the breakpoint is
encountered. The fourth form is identical to the third, except that two
breakpoints are s:i;:ecified, one at b arrl the other at c. Encountering either
breakpoint causes execution to stop, am both breakpoints are subsequently
cleared. The last two forms take the program counter fran the current machine
state, am set one arrl two breakpoints, res:i;:ectively.

Execution continues fran the starting address in real-time to the next
breakpoint. That is, there is no intervention between the starting address
and the break address by oor. Thus, if the program under test does not reach
a breakpoint, control cannot return to DOI' without executing a RST 7
instruction. Upon encountering a break:[X)int, DOI' stops execution and types

*d

where d is the stop address. The machine state can be examined at this point
using the X (Examine) commam. The q>erator must s:i;:ecify breakpoints which
differ fran the i;rogram counter address at the beginning of the G canrnand.
Thus, if the current program counter is 1234H, then the caiunands

G,1234
and

G400,400

both produce an imnediate break1X)int, without executing any instructions
whatsoever.

5. The I (Input) Canrnam. The I canrnand allows the q>erator to insert a
file ncrne into the default file control block at SCH (the file control block
created by CP/M for transient J;rograms is placed at this location~ see the
CP/M Interface Guide). The default FCB can be used by the program under test
as if it ha:! been pa.ssed by the CP/M Console Processor. Note that this file
name is also used by DOI' for reading additional HEX and COM files. The form
of the I canmam is

!filename
or

5

Ifilenane.filetype

If the second form is used, arrl the filetype is either HEX or COM, then
subsequent R commarrls can be used to read the pure binary or hex format
machine code (see the R canmarrl for further details).

6. The L (List) Cornmarrl. The L canmarrl is used to list asserrbly language
mnem:mics in a particular µ:ograrn region. The forms are

L
Ls
Ls,f

The first canmarrl lists twelve lines of disasserrbled machine code fran the
current list crldress. The second form sets the list crldress to s, arrl then
lists twelve lines of code. The ·1ast form lists disasserrbled code fran s
thtough crldress f. In all three cases, the list crldress is set to the next
unlisted location in µ:eparation for a subsequent L canmand. Upon
encountering an execution breakp:,int, the list address is set to the current
value of the {rograrn counter (see the G arrl T canmands). Again, long typeouts
can be aborted using the rubout key during the list µ:ocess.

7. The M (Move) Cornmarrl. The M canmand allows block movement of program
or data areas fran one location to another in memory. The form is

Ms,f,d

where s is the start crldress of the nove, f is the final crldress of the nove,
and d is the destination crldress. Data is first noved fran s to d, arrl both
addresses are incremented. If s exceeds f then the nove operation stops,
otherwise the nove operation is repeated.

a. The R (Read) Command. The R canmand is used in conjunction with the I
canmarrl to read COM arrl HEX files fran the diskette into the transient µ:ograrn
area in {reparation for the debug run. The forms are

R
R>

where b is an ~tional bias crldress \\hich is added to each µ:ograrn or data
address as it is loaded. The load operation must not overwrite any of the
system paraneters fran 000H through 0FFH (i.e., the first page of memory) • If
b is anitted, then b=0000 is assumed. The R canmand requires a {revious I
canmarrl, s~cifyin:J the name of a HEX or COM file. The load address for each
record is obtained fran each irrlividual HEX record, \\bile an assumed load
address of 100H is taken for COM files. Note that any nurrber of R canmands
can be issued followin:J the I canmand to re-read the µ:ograrn mder test,

6 •

•

assl.Dllirg the tested program does not destroy the default area at SCH.
Further, any file si;:ecified with the f iletype "COM" is assumed to contain
madline code in pure binary form (created with the LQ\D or SAVE coounand), and
all others are assumed to contain machine code in Intel hex format (produced,
for example, with the ASM coounand).

Recall that the canmand

DD!' filename.filetype

which initiates the our program is equivalent to the coounands

our
-Ifilename.filetype
-R

Whenever the R canrnarrl is issued, nor responds with either the error irrlicator
"?" (file cannot be q>ened, or a dlecksl.Dll error occurred in a HEX file), or
with a load message takirg the form

NEXT PC
nnnn PWP

where nnnn is the next oodress following the loaded program, and PWP is the
assumed program coonter (100H for COM files, or taken fran the last record if
a HEX file is si;:ecified).

9. The S (Set) Coounarrl. The s coounand allows memory locations to be
examined arrl q,tionally altered. The form of the coounand is

Ss

where s is the hexadecimal starting oodress for examination and alteration of
mem::>ry. DD!' resporrls with a numeric pranpt, giving the memory location, along
with the data currently held in the memory location. If the q,erator types a
Qarriage return, then the data is not altered. If a byte value is tyi;:ed, then
the value is stored at the pranpted oodress. In either case, 001' continues to
pranpt with successive oodresses arrl values mtil either a period (.) is tyi;:ed
by the q,erator, or an invalid input value is detected.

10. '!he T (Trace) Coounarrl. The T coounand allows selective tracing of
program execution for 1 to 65535 '[X'ogram steps. The forms are

T
Tn

In the first case, the CPU state is displayed, and the next {Xogram step is
executed. The 'EI"ogram terminates immediately, with the termination oodress

7

displayed as

*hhhh

where hhhh is the next crldress to execute. The display address (used in the D
canrnand) is set to the value of H and L, and the list crldress (used in the L
canmand) is set to hhhh. The CPU state at E,:Cogram termination can then be
examined using the X command.

The second form of the T canmand is similar to the first, except that
execution is traced for n steps (n is a hexadecimal value) before a {rogram
brealq;x:>int is occurs. A breakpoint can be forced in the trace node by typing
a rubout dlaracter. The CPU state is displayed before each E,:Cogram step is
taken in trace node. The format of the display is the same as described in
the X canmand.

Note that {rogram tracing is discontinued at the interface to CP/M, and
resumes after return fran CP/M to the program under test. '!bus, CP/M
functions which access I/O devices, such as the diskette drive, run in
real-time, avoiding I/O timing problems. Programs running in trace node
execute. approximately 500 times slower than real time since our gets control
after each user instruction is executed. Interrupt processing routines can be
traced, but it must be noted that camnands \tthich use the breakpoint facility
(G, T, and U) accanplish the break using a RST 7 instruction, \tthich neans that
the tested {rogram cannot use this interrupt location. Further, the trace
mode always runs the tested. program with interrupts enabled, \tthich may cause
problems if asyndlronous interrupts are received during tracing.

Note also that the c:perator soould use the rubout key to get control back
to oor during trace, rather than executing a RST 7, in order to ensure that
the trace for the current instruction is canpleted before interruption.

11. The U (Untrace) Canmand. '!be U canmand is identical to the T command
except that intermediate -,;:rogram steps are not displayed. '!be mtrace node
allows fran 1 to 65535 (0FFFFH) steps to be executed in nonitored node, and is
used principally to retain control of an executing program while it reaches
steady state conditions. All conditions of the T command apply to the U
canmand.

12. The X (Examine) Canmand. The X command allows selective display and
alteration of the current CPU state for the program under test. The forms are

X
Xr

· where r is one of the 8080 CPU registers

C Carry Flag
z Zero Flag

(0/1)
(0/1)

8

-

•

M Minus Flag (0/1)
E Even Parity Flag (0/1)
I Interdigit Carry (0/1)
A Accumulator (0-FF)
8 BC register pair (0-FFFF)
D DE register pair (0-FFFF)
H HL register pair (0-FFFF)
s Stack Pointer (0-FFFF)
p Program Counter (0-FFFF)

In the first case, the CPU register state is displayed in the format

CfZfMfEfif A=bb 8=dddd D=dddd H=dddd S=dddd P=dddd inst

where f is a 0 or 1 flag value, bb is a byte value, am dddd is a double byte
quantity corresi;x:m:'iing to the register pair. '!he "inst" field contains the
disassent>led instruction \oklich ocx:::urs at the location crldressed by the CPU
state ' s program counter.

The second form allows display~ q;>tional alteration of register values,
where r is one of the registers given above (C, z, M, E, I, A~ 8, D, H, S, or
P). In each case, the flag or register value i .s first displayed at the
console. The DD!' program then accepts · input fran the console. If a carriage
return is typed, then the flag or register value is not altered. If a value
in the prq;>er range is typed, then the flag or register value is altered.
Note that BC, CE, aoo HL are displayed as register pairs. Thus, the operator
types the entire register pair when 8, C, or the BC pair is altered.

III. IMPLEMENl'ATIOO NOl'ES.

The organization of DOI' allows certain non-essential 'EX)rtions to be
overlayed in order to gain a larger transient program area for debugging large
programs. The DD!' program consists of two parts: the DD!' nucleus am the
asserrbler/disassent>ler nodule. '!he DD!' nucleus is loaded O\Ter the Console
Canmaoo Processor, aoo, altoough loaded with the DOI' nucleus, the
asserrbler/disassent>ler is O\Terlayable mless used to assent>le or disassent>le.

In particular, the 8000 address at location 6H (address field of the JMP
instruction at location SH) is nodified by DOI' to crldress the base location of
the DD!' nucleus \oklich, in turn, contains a JMP instruction to the 8000~ '!bus,
programs \oklich use this crldress field to size memory see the logical errl of
meroory at the base of the DD!' nucleus rather than the base of the 8000.

The asserrbler/disassent>ler nodule resides directly below the DOI' nucleus
in the transient program area. If the A, L, T, or X commands are used during
the debugging process then the DOI' program cgain alters the crldress field at
6H to include this nodule, thus further reducing the logical end of memory.
If a program loads beyond the beginning of the assent>ler/disassent>ler nodule,
the A and L canmaoos are lost (their use produces a "?" in response) , am the

9

trace and display (T and X) camnands list the "inst" field of the display in
hexadecimal, rather than as a decoded instruction.

IV. AN EXAMPLE.

'lhe :followiR3 example sh:>ws an edit, assenble, and debug for a simple
program which reads a set of data values and determines the largest value in
the set. The largest value is taken fran the vector, and stored into "I.AH:iE"
at the termination of the J:COCJram

ED SCAH . ASl'IJ

./)pl.~ f.~,t tt~• •1
i, t-1 .Q!.Q it l!fil:! h-L~~T OF TRAHSIEHT AREA

ttY,! §,LEH ;LENGTH OF VECTOR TO SCAM; ~
. !tY.! C,0 ;LARGER-RU YALUE iP FAR_,

~--P_o_o_L .bX! H, \IECT ;BASE Of 'iECJo~_,
L~\ .!!.Q.Y W ; GET YALUE1 l .. iY£ ~ ; L A RG ER v 8 L ll·E I N- -G ? .,
~di"~ HFOUND ; Jlll'IP IF LARGER 1/All!E NOT FOL!N.D

l~ HEW LARGEST 1/ALUE, STORE IT TO C J
J!.QY hl ~ ~

HFOUHD: IN>< H ; TO HEl<T ELEl'IEHT
ffi B ; t10RE TO SCAN? ~ Cv-tak Sou.<~

1',~vo.~ - (.lwiu(,~~
c~,i<o.det's °bptc{ i.

..L

.L ~
>J
YECT :
LEH
LARGE:

fa•B0P_,

LOOP:

HFOUHD:

J HZ L 00 P ; F O R 8 H QI H ER_, J

EHD
!1QY..
ll!.
ill

TEST
il
EQU
ll
..i.tlA ,2

ORG
t1Yl
NYI
L)(I
NOY
SUB
JHC
HEW
NOY
I HX
DCR
JHZ

SCAM, STORE C,1 OF
A, C ; GET LARGEST VALUE,
LARGEI ,
Jl ; REBQPI,1

~ V(t}~Y"O.YYlmer_

DATA

11 J II YtPI- l'Mfio,i
rt-kt,~.

2,0,4,3,5,6,1,5,2
f.-YECT ;LEHGTH,2

J. ;LARGEST YALUE OH EXITJ

100H ;START OF TRANSIENT AREA
8,LEH ;LENGTH OF YECTOR TO SCAM
C,0 ;LARGEST YALUE SO FAR
H,YECT ;BASE OF YECTOR
A,11 ;GET YALUE
C ;LARGER YALUE IH C?
HFOUHD ;JUNP IF LARGER YALUE MOT FOUHD

LARGEST YALUE, STORE IT TO C
C,A
H
B
LOOP

;TO HEXT ELEl'IEHT
;NORE TO SCAN?
;FOR ANOTHER

10

- ; EHD OF SCAN, STORE C
NOY A, C ;GET LARGEST VALUE
STA LARGE
Jl1P 0 ;REBOOT

;

TEST DATA
VECT, DB 2,0,4,3,5,6,1,5
LEN EQU $-VECT
LARGE, DS 1

END .
.- ~ k! ri \xht •...s..~

ASM SCAN --J

CP/M ASSEMBLER - VER 1.0

0122
002H USE FACTOR
END OF ASSEMBLY

TYPE SCAN.PRN ----;

;LENGTH
;LARGEST VALUE ON EXIT

Code AJA~.;
0 10 0 t-Allc1'utt Cctlt

(Sou<re ;R"8YGM
\ ORG 100H ;START OF TRAHSIEHT AREA

- 0100 0608,)
0102 0E00
0104 211901
0107 7E
0108 91
0109 D20D01

LOOP,

MVI B, LEH ;LENGTH OF VECTOR TO SCAN
MVI C, 0 ;LARGEST VALUE SO FAR
LXI H, YECt ;BASE OF YECTOR
MOY A,M ;GET VALUE
SUB C ;LARGER VALUE INC?
JNC HFOUHD ;JUMP IF LARGER VALUE HOT FOUND
HEW LARGEST VALUE., STORE IT TO C
MO V C., A 010C 4F

010D 23
010E 05
010F C20701

HFOUHD, IHX H ; TO NEXT ELEMENT
;MORE TO SCAN?
;FOR ANOTHER

•

0112 79
0113 322101
011 6 C 3! ~0 ~ I •

Calt/~ h~..,J ;
ituKttttd ~i

0119 0200040305YECT,
0008 = <:?\ LEN
0 1 2 1 Value q. J LARGE ,
0122 E~turk

A>

DCR B
JHZ LOOP

END OF SCAN, STORE C
MDV A, C ; GET LARGEST VALLIE
STA LARGE
JMP 0 ;REBOOT

TEST DATA
DB 2,0,4,3,5,6,1,5
EQU $-VECT ;LENGTH
DS 1 ;LARGEST VALUE OH EXIT
END

I l

DDT SCAN . HEX - ~

16J< DDT YER
HEXT PC

1. 0

~~ 21-__0_0_00 ___ lo..i load udd,-es~ -1-l
-l

C0Z0N0E010 A=00 8=0000 D=8000 H=0000 S=0100 P=0000

-£J __ ~~~ ve,,l~ ~ de~~ ru~
P=0000 100

-1 el.ttnjt fc.. -\o lOO
-.!_, ~ at Vte\Sb-6 ~c.t\~

C0Z0M0E010 A=00 8=0000 D=0000 H=0000 S=0100
-L100J

,r 'PC ckt1.1d ·
P=0100 MVI B,08)

-~,~~t\
0100 l'IYI B,08
0102 NY I C,00 -to 6tctclt crt t't-='l>O
0104 LXI H,0119
0107 MOY A,1'1
0108 SUB C

1) ~~~l,J M.lld.~t 0109 JHC 010D
010C l'IOY C,A l'b<ie. d~ lCXJM . 010D IHX H
l10E DCR B ~ei ~t'l u,.h,
~10F JHZ 0107 ol~tSO.V
0112 HOV A,C
-L
-J

fl..

••

0117
0118
0119
011A
0118
011C

HOP
NOP
STAX B
NOP
IHR B
IHX 8

C0Z0N0E0I0 A=00 8=0000 D=0000 H=0000 S=0100 P=0100 MYI 8,08

-L.1 &tea~ 'rY~rM\ -h, o~ -slcf. i~TIA(CPU. S'Ut-k-, ~~~ J i-. ~ecu.-kd
C020N0E0I0 A=00 8=0000 D=9000 H=0000 S=0100 P=0100 MYI B, 08•0102

-1.; lft.U Ott~ ~;h {V\Ok oru In g) aubwa.¼. btt11kpo,~J J
C020N0E0I0 A=00 8=0800 D=0000 H=0000 S=0100 P=0102 HYI C,00•0104

-LJ 7va-e a.,10.~~ (l<~H~t< C ,~ dMfrd)
C0Z0M0E0I0 A=00 8=0800 D=8000 H=0000 S=0100 P=0104 LXI H, 0119•0107

- ll-1 Tract. -&vu ~s
C0Z0N0E0I0 A=00 8=0800 D=0000 H=0119 S=0100 P=0107 MOY A, M
C0Z0N0E0I0 A=02 8=0800 D=0000 H=0119 S=010~ P=0108 SUB C •
C0Z0H0E0I1 A=02 8=0800 D=8000 H=0119 S=0100 P=0109 JH C 010D•010D

-!!.!.,!.2~ 'O~~t~ rt~ sia~~ crt ll~W. o.~ buak,po,m- at jODU--1
0 119 0 2 0 0 0 4 0 3 0 5 0 6 0 1 ~~~~~ ~~
0 1 2 0 0 5 1 1 0 0 2 2 2 1 0 0 0 2 7 E EB 7 7 1 3 2 3 E 8 0 B 7 8 B 1 . . .~! . . " . W . I . .@.
0130 C2 27 01 CJ 03 29 00 00 00 00 00 00 00 00 00 00 . ' . ..)
0140 00 00 00 00 00 00 ~0 00 00 00 00 00 00 00 00 00
0150 00 00 00 00 00 00 00 00 00 00 00 00 00 08 00 00
0160 00 00 00 00 08 00 00 00 00 00 00 00 00 00 00 00
0170 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0180 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
8190 00 00 00 00 08 00 00 00 00 00 00 00 00 00 00 00
01A0 00 00 00 00 00 00 00 00 08 00 00 00 00 00 00 00
0180 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01C0 00 80 00 00 00 00 00 00 00 00 00 00 00 00 00 00

-:!:...i C.U«M CPU *-tt- ~
C0Z0M0E0I1 A=02 8=0800 D=0000 H=0119 S=0100 P=010D IHX H

-!.!_, "T<act ~ ~es -trtMt Cuffei.rt CPl.t sk.r,
C0Z0M0E011 A=02 8=0800 D=0000 H=0119
C0Z0M0E0I1 A=02 8=0800 D=0000 H=011A
C020N0E0I1 A=02 9=0700 D=8000 H=011A
C0Z0N0E0I1 A=02 8=0700 D=8000 H=011A
C0Z0N0E0I1 A=00 8=0700 D=0000 H=011A
us . .

--/ \tact \.11\~lw-\ h~~ l\l~edlt-¢, ~b

S=0100
$=0100
S=0100
S=0100
$=0100

P=010D
P=010E
P=010F
P=0107
P=0108

IHX
DCR
JHZ
MOY
SUB

C0Z1N0E1I1 A=00 8=0700 D=0000 H=011A S=0100 P=0109 JHC
-~,, CRu. ~-k o.t fwiof us ~

010D•0108

C0Z0N0E1I1 A=04 8=0600 D=0000 H=0118 S=0100 P=0108 SUB C

13

-9....J f'u~ ?r~ro.Y't -t~ CLtrvtk"t 're l,udil c,,~~lthti~ {tlA. coo-t,~)
* 011 6 YXeA\:.Pt>~J Cl.t llb~ I ~cl ~ &ew.-ft'l!, Jc5f 1 \~ ~fAuie. fr.de.
-K., C'l'u ~k. ccl- ewt cl Prt!fflt\
C021N0E1I1 A=00 8=0000 D=0000 H=0121

- !Sf, l~~l~ o.vrJ. l~~l 'Q~,m eDV.r\'tt<
P=0116 100,l

-x -J

S=0100 P=0116 RST 07

.
C 0 21110 E 11 1 A = 0 0 8 = 0 0 0 0 D = 0 0 0 0 H = 0 1 21 S = 0 1 0 0 P == 0 1 0 0 i M \I I B .• is ~ tt,S.' ~
-l!!• ,w lO ~~\) ~ ~tf;~ ~ ~{ ~ rs ~.,_~ rl A<.l
C0211'10E111 A=00 8=0000 D=0 0 H=0121 S- l~P=fi00 MYI 8,08
C021110E111 A=00 8=0800 D 000 H=01 S=0100 P=0102 MVI C,00
C0Z1110E111 A=00 8=080 =0000 H 121 S=0100 P=0104 LXI H,0119
C0Z11'10E1I1 A=00 8- 8!J._ D= H=-0119 S=0100 P=0107 MO\/ A,M
C021N0E111 A,@) =0Qj} =0000 H=0119 S=0100 P=0108 SUB C
C020110E0I1 A=02 8=0800 D=0000 H=0119 S=0100 P=0109 JH 010D
C0Z0M0E0If A=02 8=0800 D=0000 H=0119 S=0100 P=010D IH H
C0Z0M0E011 A=02 B=0800 D=8000 H=011A S=0100 P=010E DCR B
C0Z0110E011 A=02 8=0700 D=0000 H=011A S=0100 P=010F JHZ 0107
C0Z0110E011 A=02 B=0700 D=0000 H=011A 8=0100 P=0107 MOV A,M
C0Z0110E011 A=00 B=0700 D=0000 H=011A S=0100 P=0108 SUB C
C021110E111 A=00 8=0700 D=0000 H=011A S=0100 P=0109 JHC 010D
C021H0E111 A=00 8=0700 D=0000 H=011A S=0100 P=010D IHX H
C021110E111 A=00 8=0700 D=0000 H=0118 S=0100 P=010E DCR B
C0201'10E1ll A=00 8=0600 D=0000 H=0118 S=0100 P=010F JHZ 0107
C020110Ell1 A=00 B=0600 D=0000 H=0118 S=0100 P=0107 MOY A,M*0108

-A109., ~ t1"kt po:t&II. \\tlr, 1't.ti11\\SA&?~lL ~ .lit W-0-JU +lt<-
0 1 0 9 Jc 1 0 D J -\-w . W4el.t11te COdt- r A • L •

-tb cl.ta~ --t{...e, Vo.. iv'Ml "' u.<tV C ~,~ct J)e,.
010c11 j"oc 10 '1"<- 5,IA.ct 4-ki.s Ct.dt. vJ:tS nt t)(iw.it6.,

-Q!l 45tor WT '5£>~{ o.. v~ of it appat«. ~ -Hte .:rt.1c. ~1.&.lt\
~ ~ ~f~ratwt (o.yt b{ sa_Vlf/ b.1t. l,u~ 0... JC.. I~~

SA
1

, E 1 SC AH . CO I\? 1i-c'3Vlltll Yl$~t ~ C1V\ -t lttit A'Af,t, 'SO ~~ i 'Ptl-1! •

A>DDT SCAN. C:OH; 1<tikrt IDf £NJ\, -ff.t ~~ ~l~ l~iZ)Q;,t\i)n~ +Mi~
161<. DDT YER 1. 0
MEXT PC
0200 0100
-L 100 J L~t so~ c,de

0100 11 YI B,08
0102 l'IYI C,00

fle5td
.

., 104 LXI H, 0119 ~tVl()C.(S Po.+~ . X,r.aM t, lY\
107 110Y A,M~

0108 SUB C
0109 JC 010

14

010C "'01/ C, A
010D IHX H

• 010E DCR B
010F JHZ 0107
0112 NOY A,C
- 'I.P '}

P=0100J

-T10 -, T~t-tt> Se~ "'1ot.J f>~U\ vevs11~ oPt<cn-!S nm i!, ~d ftl!M A -b C
C0201'10E010 A=00 8=0000 D =0 0 00 H=000~ =0100 11 VI 8,08
C0201'10E010 A=00 8=0800 D=0000 H=0000 P=0102 11 VI C., 00
C0201'10E010 A=00 8=0800 D =0 0 00 H=0000 P=0104 LXI li,0119
C0201'10E010 A=00 8=0800 D=0000 H=0119 P=0107 110 I/ A, t'I
C0201'10E010 A 0~ 8=0800 D=0000 H=0 P=0108 SUB C
C0201'10E0I 1 A=02 B 800 D=00 l 1 9 8=0100 P=0109 JC 010D
C020110E011 A=02 8=0 00 D 00 H=0119 $=0100 P=010C l'IOY C, A
C020'10E011 A=02 B=0 0 D=0000 H=0119 S=0100 P=010D IHX H
C0201'10E011 A=02 8=08 2 D=8000 H=011A $=0100 P=810E DCR B
C0Z01'10E011 A=02 8=0702 D=00 00 H=011A 8=0100 P=010F JHZ 0107
C0201'10E011 A=02 8=0702 D=0000 H=011A 8=0100 P=i?107 MOY A, l'1
C020110E011 A=00 8=0702 D=00 00 H=011A S=0100 P=0108 SUB C
C1201'11E010 A=FE 8=0702 D=0000 H=011A S=0100 P=0109 JC 010D
C1Z01'11E010 A=FE 8=0702 D =00 00 H=011A S=0100 P=010D I HX H
C1Z0111E010 A=FE 8=0702 D=00 00 H=011B $=0100 P=010E DCR 8
C1Z01'10E111 A=FE 8=0602 D=00 00 H=011B $=0100 P=010F JHZ 0107•0107
-x

~rb~ o&< lb~ - -;

ClZ01'10E111 A=FE 8-=0602 D =0 0 00 H=011B S=0100 P=0107 l'IOY A, 11
-G, 1 08

~ 12<M -f~M C.Utvl~ 'PC. aVtd. ~e~po;'1ct at IOCl,H
•0108 .
-1:., '~t.d- ~ ctl!AA
C1Z01'10E111 A=04 8=0602 D=0000 H=011B S=0100 P=0108 SUB C
-T -J 'o LIA8k ~ ftX" a. "S!w ~d~
C1201'10E111 A=04 8=0602 D=0000 H=011B S=0100 P=0108 SUB C•0109
-T
-i

C020110E011 8=0602 •
010D•010C A=02 D=0000 H=011B 8=0100 P=0109 JC

-x -,I

C020M0E011 A=02 8=0602 D=00 00 H=011B 8=0100 P=010C 1'10\/ C,A
-G {<~ -\o &n\.PlehM -,
•0116
-x -J
C0211'10E111 A=03 8=0003 D=0000 H=0121 S=0100 P=0116 RST 07
-ll.LJ.i \ ook. a± -tv.e U>.l.1At cf '' l.AfG€ 11

• 0121 0 3,1 Wv"'-' 'Alu.i. /

/':)-

0122 00_,

0123 22 J
0124 21J

0125 00_,

0 1 2 6 0 2 J / l:v.d &-11.t s Cojl\mo.wl.

0127 7E • -~
-!:_!!!;

0100
0102
0104
0107
0108
0109
010C
010[1
010E
010F
0112
-L
-J
0113
0116
011 7
0118
0119
011 A
011 B
011 C
011 D

M't'I B,08
MYI C,00
LXI H,0119
MOY A., M
SUB C
JC 010D
MO\/ C,A
IHX H
DCR B
JHZ 0107
MOV A,C

STA 0121
07 RST

HOP
HOP
STAX B
HOP
I HR
IHX
DCR

B
B
B

011E MVI
0120 DCR
-XP

B, 0 1
8

fk\Jw.u -fk Ctde.

-J
p = 0 1 1 6 1 0 0 Reset -1\..e f e

-J

-1..1 c;\~lt 45\w, a.vttl ~d.t dak ve1.l1tts
C021M0E1l1 A=03 8=0003 D=0000 H=0121 S=0100 P=0100 MVI B, 08•0102
-T -;
C0ZlM0Ell1 A=03 0=0803 D=0000 H=0121 S=0100 P=0102 M't'I C,00•0104

- 'I_,/ ,Cul.Lt\+¢" L'
• ~la,'\• set

C021M0E1I1 A=03 8=0800 D=0000 H=0121 S=0100 P=0104 LXI H, 0119•0107

-iJ ,~adk~i~~t
C021H0E1I1 A=03 8=0800 D=0000 H=0119 8=0100 P=0107 NOV A, M*0108

•

•

•

-T
-J

C02lM0E1I1
-1..,

C0Z0M0E0I1
-T -;
C0Z0H0E011
-T
-J

C0Z0M0E011
-T -;
C:0Z0M0E0I1
-T -.;
C0Z0H0E0I1
-T

-J
t0Z0M0E011
-·T -~
C020M0E011
-T -J
C1Z0M1E0I0
-T -~

c+l,;~ tla-k ~ ~Yo~kt t A
A=02 9=0800 D=0000 H=0119 8=0100 P=0108 SUB

A=02 8=0800 {1=0000 H=0119 8=0100 P=0109 JC

A=02 8=0800 D=0000 H=0119 S=0100 P=010C 110V

r-fw d.cdz>. ~ ~id ~ C. con·edlj
A=02 8=0802 D=0000 H=0119 8=0100 P==010D HIX

A=02 8=0802 D=0000 H=011A 8=0100 P=010E DCR

A=02 8=0702 D=0000 H=011A $=0100 P=010F JHZ

A=02 8=0702 D=0000 H=011A 5=0100 P=0107 MOV

r StcoY'd &o:!--. ~ \o,ou.-,Lct ii, A
A=00 8=0702 D=0000 H=011A S=0100 P=0108 SUB

r s~~ct d.eJrt18S ~ valut- l.Jk,~ w~s locJ.td).I!
A=FE B=0702 D=0000 H=011A 8=0100 P=0109 JC

C•0109

010D•010C

C.,R*010D

H•010E

8•010F

0107•0107

C •0 10 9

C1Z0M1E010 A=FE 9=0702 D=0000 H=011A 8=0100 P=010D INX H*010E
-L100 -.;
0100
0102
0104
0107
0108
0109
010C
01 er,
010E
010F
0112
-A108
-,J

0108

0109i

MVI
M'l"I
L XI
MOV
SUB
JC
MO\/
HIX
DCR
.. IHZ
MOV

9 ., 08
C., 00
H,0119

~, :----1tm ~oJd ~L~! bitei.i ~ CM P so 4at y~ 14Str A
0 10 D W'Mld. ~ ~ deJrf1Utd..
C, A -v
H
B
0107
A., C

Cl'IP C
J

-S&..,i ~P WT ~ 5NJt

17

SAVE 1 SCAN.COM,)

A>DDT SCAH. COM-1

161<. DDT VER 1.0
l~EXT PC
0200 0100
-XPJ

P=0100J

-~;
0116 RST 07
0117 HOP
0118 HOP
0119 STAX B
011A HOP

bk. a.t Cc-0.t f c ~e i i+ WCts ?-Jo-perl~ L()cl6.ed
Clo\\~ i'!1~ou.t a.lo~t uit~ YuJoou.t)

- (~lo~-\:)

- G .• 11 6, QuV\. ~YV-M

•0116

-~ ~ ~~l Qt Cc,f~ (M:utekl "DPO)
Cl~

-~i look a.t Cfl.t ~t.
C1Z1M0E1I1 A=06 8=0006 D=0000 H=0121 S=0100 P=0116 RST 07

-2..!11 J \. oo~ a+ .. , Lar3t O - i {- afi)eo.(S -b k Csrrta:
0121 06,1

0122 00J

0123 22 •J

-.9! ~ .CS-tt,p PDT

ED SCAH ASM . ;

LT ,1
C

HFOUND

NFOUHD

;LARGER

;LARGER

; JUMP I F

; ,J LI MP IF

I '1

VALUE IN C?

VALUE IN C?

LARGER VALLIE

LARGER i/Alll E

HOT FOUND

NOT FOUND

•

•

•

0122
002H USE FACTOR
HLCt OF ASSEMBL Y

DDT scA N. HEX; Qt,~u.t.t debwi1e('t'o c~eck ~~ts
161<. DDT VER 1. 0
MEXT PC
0121 0000
-L116J

0 1 1 6 J MP 0 0 0 0 c!Atc~ -lo ~Vt 6'G. ·ls c;-\." 1 ll ttt I!&~
0119 STA>: B
011A NOP
0118 IHR B
-· (y~)

-G100, 116,., Go%~ ~1;'v,V'
0

\tlj wt} kea.~po~~\- ~ elACi
it: 0 11 6 kJv ta,~ po.~ r~~«l
-~ J Loo~ at ''LAt,e C<14{ut \Ai/ut c,~ptJ~,
0121 ~2 7'E EB 77 13 23
0130 C2 27 01 C3 03 29 00 00 00 00 00
0140 00 00 00 00 00 00 00 00 00 00 00

EB
00
00

08 78
00 00
00 00

81 II! ~ . hi. I . . X .
00 00 J) .

00 00

•

•

•

t'

- - -

u

•

Table of Contents

Section

1.
2.
3.

4.

INl'IOU:TI~ • ••••••••••••••••••••••••••••••••••••••
PRCCRM .EOIIIAT •••••••••••••••••••••••••••••••••••••
FOIMIR; THE CPERAND ••••••••••••••••••••••••••••••••
3.1. Iabels •••••••••••••••••••••••••••••••••••••••
3.2. Nuneric Constants••••••••••••••••••••••••••••
3.3. Reserved words•••••••••••••••••••••••••••••••
3.4. String Constants•••••••••••••••••••••••••••••
3.5. Arithmetic and IDgical Operators•••••••••••••
3.6. Precedence of Operators••••••••••••••••••••••
A.$EMBLER DIRECTIVES•••••••••••••••••••••••••••••••

• •••••••••••••••••••••••••••

Page

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.

The OR; Directive
The mo Directive
The EQU Directive
The Sm' Directive

• ••••••••••••••••••••••••••••

1
2
4
4
4
5
6
6
7
8
8
9
9

5.

6.
7 •

• •••••••••••••••••••••••••••
• •••••••••••••••••••••••••••

The IF and ENDIF Directives ••••••••••••••••••
The 00 Directive•••••••••••••••••••••••••••••
The™ Directive•••••••••••••••••••••••••••••

CPERATI~ OOIES ••••••••••••••••••••••••••••••••••••
5.1.
5.2.
5.3.
5.4.
5.5.
5.6.

Jumps, calls, and Returns••••••••••••••••••••
Inmediate Operand Instructions•••••••••••••••
Increment and Decrement Instructions•••••••••
r:eta z.twement Instructions•••••••••••••••••••
Arithmetic IDgic Unit Operations•••••••••••••
Control Instructions•••••••••••••••••••••••••

ERIOR f£SSAGES •••••••••••••••••••••••••••••••••••••
A SAMPLE S&SSIOO •••••••••••••••••••••••••••••••••••

10
10
11
12
12
13
14
14
14
15
16
16
17

•

•

CP/M Assenbler user's Guide

1. INl'IOXaI~.

The CP/M assent>ler reads assenbly language oource files fran the diskette,
and troduces 8080 machine la03uage in Intel hex format. '!he CP/M assent>ler is
initiated by typing

A9'1 filename
or

A9'1 filename.parms

In both cases, the assenbler asst111es there is a file on the diskette with the
name

filename.ASH

whidl contains an 8080 assent>ly language oource file. '1he first am second
forms shown above differ only in that the second form allows puameters to be
passed to the assent>ler to control oource file access am hex am tr int file
destinations.

In either case, the CP/M assenbler loads, am pcints the message

CP/M ASSD!BLER VER n.n

where n.n is the current version nmber. In the case of the first ccmnand,
the asseni>ler reads the oource file with assl.lDed file ~ "ASM" am creates
two output files

and
filename.HEX

filename.PRN

the •HEX• file contains the nachine code corresEX)ndi03 to the original i:rogram
in Intel hex format, am the "l?RN" file contains an annotated Usti03 soowi.ng
generated machine code, error flags, am oource lines. If errors occur during
translation, they will be listed in the PRN file as well as at the console

'!he second canmand form can be used to redirect input arxl output files
fran their defaults. In this case, the "parms" {X)rtion of the ccmnand is a
three letter group which st:ecifies the origin of the oource file, the
destination of the hex file, am the destination of the trint file. 'Ille form
is ·

filename.plp2p3

~ere pl, p2, am p3 are single letters

pl: A,B, ••• , Y designates the disk name which contains

1

p2: A,B,

z
p3: A,B,

X
z

Thus, the carnnand

AfM X.AAA

••• , y

••• , y

the source file
designates the disk name which will re
ceive the hex file
skips the generation of the hex file
designates the disk name which will re
ceive the print file
places the listing at the console
skips generation of the print file

indicates that the source file (X.ASM) is to be taken frorn disk A, and that
the hex (X.HEX) and print (X.PRN) files are to be created also on disk A.
This form of the canrnand is implied if the asserrbler is run frorn disk A. That
is, given that the operator is currently addressing disk A, the above command
is Equivalent to

AfM X

The canrnaoo

AfM x.;.sx

•

indicates that the oource file is to be taken from disk A, the hex file is •
placed on disk B, aoo the listing file is to be sent to the console. The
command

AfM X.BZZ

takes the oource file frorn disk B, and skips the generation of the hex aoo
print files (this canrnand is useful for fast execution of the asserrbler to
check program syntax) •

The oource program format is canpatible with both the Intel 8080 asserrbler
(macros are not currently implemented in the CP/M asserrbler, oowever), as well
as the Processor Technology software Package #1 asserrbler. That is, the CP/M
asserrbler accepts oource programs written in either format. - There are certain
extensions in the CP/M asserrbler which make it somewhat easier to use. These
extensions are described below.

2. PROORAM FORMAT.

An asserrbly language program acceptable as input to the asserrbler consists
of a se:;iuence of statements of the form

line# label operation operand ;corranent

\\here any or all of the fields may be present in a i;articular instance. Each

2

~embly language statement is terminated with a carriage return and line feed
{the line feed is inserted automatically by the ED J;>rograrn), or with the
character "!" which is a treated as an end-of-line by the asserrbler {thus,
multiple asserrbly language statements can be written on the same physical line
if separated by exclaim syrrbols).

The line# is an q:>tional decimal integer value representing the source
program line nunber, which is allowed on · any source line to maintain
canpatibility with the Processor Technology format. In general, these line
nunbers will be inserted if a line-oriented editor is used to construct the
original J:("ograrn, arrl thus ASM ignores this field if present.

or

The label field takes the form

identifier

identifier:

and is optional, except where noted in particular statement types. '!he
identifier is a S9:luence of alphanumeric characters {alphabetics and numbers),
where the first dlaracter is alphabetic. Identifiers can be freely used by
the prograrraner to label elements such as program steps arrl asserrbler
directives, but cannot exceed 16 characters in length. All characters are
significant in an identifier, except for the embedded dollar syrrbol {$) which
can be used to irnJ:("ove readability of the name. Further, all lower case
alphabetics becane are treated as if they were utper case. Note that the ":"
following the identifier in a label is optional {to maintain cornpatibili ty
between Intel arrl Processor Technology). 'Ihus, the following are all valid
instances of labels

X

x:
XlY2

xy
yxl:
Xlx2

long$narne
longer$narned$data:
x234$5678$9012$3456:

The operation field contains either an asserrbler directive, or pseudo
operation, or an 8080 machine operation code. 'lhe pseudo operations and
madline operation codes are described below.

The operand field of the statement, in general, contains an expression
formed out of constants arrl labels, along with arithmetic arxl logical
operations on these elements. Again, the canplete details of properly formed
expressions are given below.

The canrnent field contains arbitrary dlaracters following the ":" syrrbol
until the next real or logical end-of-line. 'lhese characters are read,
listed, arrl otherwise ignored by the asserrbler. In order to maintain
canpatability with the Processor Technology asserrbler, the CP/M asserrbler also
treat statements which begin with a "*" in column one as comment statements,
which are listed arrl ignored in the asserrt>ly lXOcess. Note that the Processor

3

Technology assenbler has the side effect in its operation of ignoring the
characters after the operand field has been scanned. 'Ibis causes an ambiguous
situation when attempting to be compatible with Intel· s language, since
arbitrary expressions are allowed in this case. Hence, :EXograrns \\hich use
this side effect to introduce ccmments, must be edited to place a ":" before
these fields in order to assenble correctly.

The assent>ly language i;:rograrn is formulated as a sequence of statements of
the above form, terminated cptionally by an END statement. All statements·
following the END are ignored by the assembler.

3. FORMING THE CPERAND.

In order to canpletely describe the operation codes and pseudo operations,
it is necessary to first :EXesent the form of the operand field, since it is
used in nearly all statements. Expressions in the operand field consist of
simple cperands (labels, constants, and reserved words), combined in properly
formed sl.bexpressions by arithmetic and logical operators. '!be expression
computation is carried out by the asserrbler as the assa;rbly :EXoceeds. Each
expression must :EXoduce a 16-bit value during the assenbly. Further, the
mmber of significant digits in the result must not exceed the intended use.
That is, if an expression is to be used in a byte nove irrmediate instruction,
then the nest significant 8 bi ts of the expression must be zero. '!be
restrictions on the expression significance is given with the irrlividual
instructions.

3.1. labels.

As discussed above, a label is an identifier \\hich occurs on a particular
statement. In general, the label is given a value determined by the type of
statement \\hich it :EXecedes. If the label occurs on a statement \\hich
generates madline code or reserves memory sp:1ce (e.g, a r!fJV instruction, or a
DS pseudo · cperation), then the label is given the value of the prog.(arn crldtess
which it labels. If the label precedes an EQU or SET, then the label is gj,ven
the value \\hich results from evaluating the operand field. Except for the SET
statement, an identifier can label only one statement.

When a label appears in the operand field, its value is substituted by the
asseni:>ler. This value can then be cart>ined with other operands and operators
to form the cperand field for a particular instruction.

3.2. Numeric Constants.

A numeric constant is a 16-bi t value in one of several bases. '!be base,
called the radix of the constant, is denoted by a trailing radix irrlicator.
The rcrlix irrlicators are

B binary constant (base 2)
O octal constant (base 8)

4

•

•

Q octal constant (base 8)
D decimal constant (base 10}
H hexadecimal constant (base 16}

Q is an alternate ra:Ux iooicator for octal nurrbers since the letter O is
easily ccnfused with the digit 0. '!my numeric constant \t4'lich does not
terminate with a rcrlix iooicator is assl.B'lled to be a decimal constant.

A constant is thus can:EX)sed as a sequence of digits, followed by an
optional rcrlix iooicator, mere the digits are in the appropriate range for
the -raHx. That is binary constants must be com:EX)sed of 0 and 1 digits, octal
constants can contain digits in the range 0 - 7, \\bile decimal constants
contain decimal digits. Hexadecimal constants contain decimal digits as well
as hexadecimal digits A (10D} , B (11D} , C (12D} , D (13D} , E (140} , and F
(15D). Note that the leading digit of a hexadecimal constant must be a
decimal digit in order to avoid confusing a hexadecimal constant with an
identifier (a leading 0 will always suffice) • A constant composed in this
manner must evaluate to a binary nurrber \t4'lich can be contained within a 16-bit
counter, otherwise it is truncated on the right by the assenbler. Similar to
identifiers, i.rrbedded "$" are allowed within constants to impr.ove the.ir
readability. Finally, the radix iooicator is translated to u~r case if a
lower case letter is encountered. The following are all valid instances of
numeric ccnstants

1234
1234H
33770

1234D
0FFEH
0fe3h

3.3. Reserved Words.

ll00B
33770
1234d

1111$0000$1111$0000B
33$77$220
0ffffh

'Ihere are several reserved dlaracter sequences \t4'lich have predefined
meanings in the cperand field of a statement. The names of 8080 registers are
given below, \tlich, \t4'len encountered, produce the value shown to the right

A 7
B 0
C 1
D 2
E 3
H 4
L 5
M 6
SP 6
PSW 6

(again, lower case names have the same values as their UR;)er case
equivalents). Madline instructions can also be used in the operand field, and
evaluate to their internal codes. In the case of instructions \\bich require
operands, \\here the. specific cperand becomes a pirt of the binary bit pittern

5

of--ttre instruction (e.g, llDV A,B), the value of the instruction (in this case
MJV) is the bit i;:attern of the instruction with zeroes in the optional fields
(e.g, llDV produces 40H).

When the syrrbol "$" occurs in the operand field (not inbedded within
identifiers and numeric constants) its value becomes the crldress of the next
-instruction to generate, not including the instruction contained withing the
current logical line.

3.4. String Constants.

String constants represent sequences of AOCII characters, and are
represented by enclosing the characters within apostrophe syrrbols ('). All
strings must be fully contained within the current physical line (thus
allowing "!" syrrb9ls within strings), arxl must not exceed 64 characters in
length. The apostrophe character itself can be included within a string by
representing it as a double apostrophe (the two keystrokes ''), which becomes
a single apostrophe \\hen read by the assercbler. In nost cases, the string
length is restricted to either one or two characters (the DB pseudo operation
is an exception), in \\hich case the string becomes an 8 or 16 bit value,
respectively. Two character strings become a 16-bit constant, with the second
character as the low order byte, and the first character as the high order
byte.

The value of a character is its corresponding ASCII code. There is no
case translation within strings, and thus both u'E={)er and lower case characters
can be represented. Note however, that only graphic (printing) ASCII
characters are allowed within strings. Valid strings are

, C,
'a"'" ,,,,,,,,,, ,,,, .. ,

'Walla Walla Wash •.
·she said "Hello .. to me.·
'I said "Hello" to her. •

3.5. Arithmetic arxl Logical q;>erators.

The cperands described above can be combined in normal algebraic notation
using any canbination of properly formed q;,erands, operators, arxl
parenthesized expressions. The q;,erators recognized in the operand field are

a+b
a - b

+b
- b

a * b
a/ b
a M:::>D b
NOi' b

t.msigned arithmetic sum of a . and b
t.msigned arithmetic difference between a and b
t.mary plus (produces b)
t.mary minus (identical to 0 - b)
t.msigned magnitude multiplication of a and b
msigned magnitude division of a by b
remainder after a/ b
logical inverse of b (all 0·s become l's, l's
become 0's), where bis considered a 16-bit value

6

•

•

•

a AND b
a OR b
a XOR b
a SHL b

a SHR b

bit-by-bit logical and of a and b
bit-by-bit logical or of a and b
bit-by-bit logicl exclusive or of a and b
the value which results fran shifting a to the
left by an arrount b, with zero fill
the value which results fran shifting a to the
right by an arrount b, with zero fill

In each case, a arrl b represent simple operands (labels, numeric
constants, reserved words, and one or two dlaracter strings), or fully
enclosed parenthesized subexpressions such as

10+-20 10h+37Q Ll /3 (L2+4) SHR 3
('a' and Sfh) + '0' ('B'+B) OR (PSW+M)
(1+(2+c)) shr (A-(B+l))

Note that all canputations are r,erformed at asserrbly time as 16-bi t Lmsigned
operations. Thus, -1 is canputed as 0-1 which results in the value 0ffffh
(i.e., all l's). The resulting expression must fit the operation code. in
which it is used. If, for example, the expression is used in a ADI (add
immediate) instruction, then the high order eight bits of the expression .must
be z.ero. As a result, the q,eration "ADI -1" produces an error message (-1
becomes 0ffffh \\hich cannot be represented as an 8 bit value), while "ADI (-1)
AND 0FFH'' is accepted by the asserrbler since the "AND" cperation zeroes the
high order bits of the expression •

3.6. Precedence of Operators.

As a convenience to the i;rogrammer, AfM assumes that operators have a
relative precedence of application which allows the programmer to write
expressions without nested levels of parentheses. '!he resulting expression
has assumed parentheses \\hich are defined by the relative i;recedence. '!he
order of awlication of q,erators in Lmparenthesize expressJorts is listed
below. Operators listed first have highest precedence (they ar~ applied first
in an tnparenthesized expression) , \\bile operators listed .last have lowest
precedence. Operators listed on the same line have equal rrecedence, and are
applied fran left to right as they are encountered in an expression

* I l-OD SHL SHR
- +
NOi'
AND

OR XOR

Thus, the expressions shown to the left below are interpreted by the asserrbler
as the fully parenthesize expressions shown to the right below

a * b + c
a+ b * c
a M::>D b * c SHL d

(a * b) + c
a + (b * c)
((a M::>D b) * c) SHL d

7

a OR b AND NO!' c + d SHL e a OR (b AND (NOi' (c + (d SHL e))))

Balanced i:arenthesized subexpressions can always be used to override the
assumed i:arentheses, aoo thus the last expression above could be rewritten to
force application of operators in a different order as

(a OR b) .AND (NO!' c) + d SHL e

resulti~ in the assumed i:arentheses

(a OR b) .AND ((NOi' c) + (d SHL e))

Note that an tnparenthesized expression is well-formed only if the ~pression
which results fran inserting the assumed i:arentheses is well-formed.

4. ASSEMBLER DIRECI'IVES.

Asserrbler directives are used to set labels to specific values .d1,Jring the
assrrbly, perform conditional assenbly, define storage areas, arxl specify
starting crldresses in the program. F.ach asserrbler directive is. denoted by a
"pseudo q>eration" which appears in the q>eration field of the line. 'lbe
acceptable pseudo q;>erations are

OR;
END
mu
SET
IF
ENDIF
00
00
00

set the program or data origin
eoo program, optional start crldress
numeric "equate"
nurneric ."set"
begin conditional asserrbly
eoo of conditional asserrbly
define data bytes
define data words
define data storage area

The iooividual pseudo q>erations are detailed below

4.1. The 000 directive.

'lbe OR; statement takes the form

label ORG expression

where "label" is an optional program label, aoo expression .is a 16-:-bit
expression, consisting of q:,erands which are defined previous tQ the ORG
statement. 'Ihe asserrbler bEgins machine code generation at the. location
specified in the expression. There can be any nurrber of ORG statements within
a i:articular Erogram, aoo there are no checks to ensure that the programmer is
not defining overlapping rneoory areas. Note that nost programs written for
the CP/M system begin with an ORG statement of the form

OR; 100H

8
•

•

•

which causes machine code generation to begin at the base of the CP/M
transient i;:rogram area. If a label is specified in the OR; statement, then
the label is given the value of the expression (this label can then be used in
the c:perand field of other statements to represent this expression).

4.2. The END directive.

The END statement is cptional in an assembly language program, but if it
is i;:resent it must be the last statement (all subsequent statements are
ignored in the assembly). The two forms of the END directive are

label
label

END
END expression

where the label is again cptional. If the first form is used, the assembly
process stops, arrl the default starting oodress of the t:eogram is taken as
0000. Otherwise, the expression is evaluated, and becomes the program
starting oodress (this starting oodress is included in the last record of the
Intel formatted madline code "hex" file which results fran the assembly) •
Thus, most CP/M assembly language t:eograms errl with the statement

END 100H

resulting in the default starting oodress of 100H (beginning of the transient
program area).

4.3. The EQU directive.

The EQU (equate) statement is used to set up synonyms for p:lrticular
numeric values. the form is

label mu expression

where the label must be i;:r_esent, and must not label · any other statement. The
asserrbler ei,aluates the expression, and assigns this value to the identifier
given in the label field. The identifier is usually a nc1t1e \\hich describes
the value in a nore human-oriented manner. Further, this name is used
throughout the µ:ogram to "p:irameterize" certain ftmctions. Suppose for:
example, that data received fran a Teletype appears on a i=articular input
port, arrl data is sent to the Teletype through the next output p:>rt in
sequence. The series of equate statements could be used to define these p:>rts
for a particular hardware environment

T'IYBASE
'PIYIN
TIYour

mu 10H ;BASE FORT NUMBER FOR TTY
mu TIYBASE ;TTY mTA IN
mu T'IYBASE+l;TTY IY\TA our

At a later µ,int in the i;:rogram, the statements which access the Teletype
could appear as

9

IN 'ITYIN
•••
OlTI' 'ITYOur

:READ '1TY m.TA TO REG-A

:WRITE mTA TO 'ITY FROM Rm-A

making the program rrore readable than if the absolute i/q µu:ts had been
used. Further, if the hardware envirornnent is redefined to st:a~t .the Teletype
comrmmications µ:>rts at 7FH instead of 10H, the first statement need only" be
changed to

TTYBASE ·EQU 7FH :BASE IORI' NUMBER FOR '1TY

and the program can be reassembled without changing any other statements.

4.4. The SET Directive.

The SET statement is similar to the EQU, taking the form

label SE!' expression

except that 'the label can occur on other SET statement_s .. wj. tpj.n the. program.
The expression is evaluated and becomes the current value associated. with the
label. Thus, the EQU statement defines a label with a sing;l.e v_a~ue, while the
SET statement defines a value which is valid fran the current SET statement to
the ?Jint ~ere the ·label occurs on the next SET statement. '!he use of the
SET is similar to the EQU stateme_nt, but is used rrost often in' controlling •
conditional asserrbly.

4.5. The IF and ENDIF directives.

The IF and ENDIF .statements define a range of asserrbly language statements
which are to be included or excluded during the .assentily -i;rocess. The form •is

IF expression
statement#!
statement:ff:2

•••
statement#n
ENDIF

f

Upon encountering the IF statement, the asserrbler evaluates the expression
.following the 'IF (all operands in the expression must be defined ahead of the
IF statement). If the expression evaluates to a non-zero value, 'then
statement#! t;.hrough statement#n are asserrbled: if the expression evaluates to
zero, then the statements are listed but not asserrbled. Conditional as$errbly
is often used to write a single "generic" program which •incluae·s a -rurrber of
possible run-time environments, with only a few specific µ:>rtions of the
program selected for any particular assembly. The following prpgtam• segments
f.or example, might be part of a J;:('ogram which ccmmunicates with' either a
Teletype or a CR!' console (but not both) by selecting a '[:articular value for
TTY before the asserrbly begins

10 •

•

TIWE: EOU 0FFFFH
FALSE EOU NOi' TRJE . ,
TIY EOU TRJE . ,
TIYBASE mu 10H
CRIBASE EOU 20H

IF TIY
(X)NIN mu TIYBASE
(X)NCXJI' EQU TIYBASE+l

ENDIF

IF Nor TlY
OONIN EOU CRI'BASE
(X)NCXJI' mu CRI'BASE+l

ENDIF
•••
IN

•••
our

OONIN

CONOOI'

:DEFINE VALUE CF TRJE
:DEFINE VALUE CF FALSE

:TRJE IF TTY, FALSE IF CRr

:BASE CF TTY I/0 !ORTS
:BASE CF CRI' I/0 !ORTS
:ASSEMBLE REIATIVE 'IO TI'YBASE
:OONSOLE INPUI'
:CONSOLE a.Jl'PUI'

:ASSEMBLE REIATIVE 'IO CRI'BASE
:CONSOLE INPUI'
:OONSOLE a.Jl'PUI'

:RF.AI> (X)NSOLE mTA

:w1UTE (X)NSOLE mTA

In this case, the rcogram would asserrble for an environment were a Teletype
is connected, based at :EX)rt 10H. The statement defining TTY could be dlanged
to

TIY EOU FALSE

and, in this case, the {X'ogram would asserrble for a CR!' based at ~rt 20H.

4.6. The DB Directive.

The DB directive allows the rcograrrarer to define initialize storage areas
in single {X'ecision (byte) format. The statement form is

label DB e#l, e#2, ••• , e#n

\tbere e#l through e#n are either expressions \to'hich evaluate_ to 8-bit values
(the high order eight bits must be zero), or are ASCII strings of length no
greater than 64 characters. There is no pt'actical restriction on the nmber
of expressions included on a single source - line. '!he expressions are
evaluated and placed seguentiall y into the machine cooe file followir¥J - the
last rcogram crldress generated by the assembler. String characters are
similarly placed into nernory starting with the first character and .ending with
the last character. Strings of length greater than two characters cannot be
used as cperands in nore canplicated expressions (i.e., they must stand alone
between the canrnas) • Note that ASCII characters are always placed in menpry
with the i:arity bit reset (0). Further, recall that there is no translation
f ran lower to u"R;)er case within strings. The q>tional label can be used to
reference the data area throughout the remainder of the rcogram. Examples of

11

valid DB statements are

data: DB
00

signon: 00
00

4. 7. The DW Directive.

0,1,2,3,4,5
data and 0ffh,5,377Q,1+2+3+4
'please type your name',cr,lf,0
'AB' SHR 8, 'c', 'DE' AND 7FH

The ow statement is similar to the DB statement except. double precision
(two byte) words of storage are initialized. The form is

label ow e#l, e#2, ••• , e#n

\there e#l through e#n are expressions \\hich evaluate to 16-bi t results. Note
that ASCII strings of length one or two characters are allowed, but strings
longer than two characters disallowed. In all cases, the data storage is
consistent with the 8080 processor: the least significant byte of the
expression is stored forst in memory, followed by the rrost significant byte.
Examples are

daub: DW 0ffefh,doub+4,signon-$,255+255
ow 'a', 5, 'ab', 'co', 6 shl 8 or llb

4.8. The 00 Directive.

The O.S statement is used to reserve an area of tmini tialized memory, and
takes the form

label 00 expression

where the label is optional. The asserroler begins subsequent code generation
after the area reserved by the OS. Thus, the OS statement given ~ve has
exactly the same effect as the statement

label: F.QU $:LABEL VALUE IS CURREN!' mm UX:ATION
OIG $+expression :K>VE PAST RFSERVED AREA

5. OPERATIOO a>DES.

Assent>ly language operation codes form the principal part of assembly
language programs, aoo form the operation field of the instruction. In
general, AfM accepts all the standard nnerronics for the Intel 8080
microcanputer, \tbich are given in detail in the Intel manual "8080 Assembly
language Programming Manual." Labels are optional on each input line and, if
included, take the value of the instruction crldress immediately before the
instruction is issued. The iooividual operators are listed breifly in the

12 •

•

•

•

followin:J sections for canpleteness, although it is understood that the Intel
manuals sh:>uld be referenced for exact operator details. In each case,

e3 represents a 3-bit value in the range 0-7
'l.hich can be one of the predefined registers
A, B, c, D, E, H, L, M, SP, or PSW.

e8 represents an 8-bit value in the range 0-255

el6 represents a 16-bit value in the range 0-65535

'l.hich can themselves be formed from an arbitrary canbination of ~rands arrl
operators. In &>me cases, the q:,erands are restricted to i:articular values
within the allowable range, such as the PUSH instruction. 'Ihese cases will be
noted as they are encountered.

In the sections \\hich follow, each operation codes is listed in its nost
general foon, along with a si;ecific example, with a sh:>rt explanation arrl
special restrictions.

5.1. Jumps, Calls, and Returns.

'!be Jump, Call, arrl Return instructions allow several different foons
which test the condition flags set in the 8080 microcomputer CPU. 'Ihe foons
are

JMP el6 JMP I.J. Jump i.nconditionally to label
JNZ el6 JMP L2 Jump on non ze~o condition to label
JZ el6 JMP 100H Jump on zero condition to label
JNC el6 JNC I.J.+4 Jump no carry to label
JC el6 JC .L3 Jump on carry to label
JIO el6 JIO $+8 Jump on parity odd to label
JF£ .el6 J~ L4 Jump on even i:arity to label
JP el6 JP ~ Jump on p:,sitive result to label
JM el6 JM al Jump on minus to label

CALL el6 CALL Sl Call subroutine unconditionally
CNZ el6 CNZ S2 Call subroutine if non zero flag
CZ el6 CZ 100H Call subroutine on zero flag
CNC el6 CNC S1+4 Call subroutine if no carry set
cc el6 cc S3 Call subroutine if carry set
cro el6 cro $+8 Call subroutine if i:arity odd
CPE el6 CF£ S4 Call subroutine if tarity even
CP el6 CP ~ Call subroutine if p:,sitive result
CM el6 CM bl$c2 Call subroutine if minus flag

RST e3 RSI' 0 Programmed "restart", equivalent-. to
CALL 8*e3, except one byte call

13

RE'!'
RNZ
RZ
RNC
RC
RPO
RPE
RP
RM

Return frcm subroutine
Return if non zero flag set
Return if zero flag set
Return if no carry
Return if carry flag set
Return if i:ari ty is odd
Return if i:arity is even
Return if tx)Sitive result
Return if minus flag is set

5.2. Immediate Operand Instructions.

Several instructions are available \\hich load single or double precisi-0n
registers, or single p:-ecision memory cells, with constant values, al-0ng with
instructions \\hich ~rform immediate arithmetic or loc;:Jical operations on the
accumulator (register A).

MVI e3,e8

ADI e8
AC! e8
SUI e8
SB! e8
AN! e8
XRI e8
ORI e8
CPI e8

MVI B,255 Move immediate data to register A, B,
C, D, E, H, L, or M (memory)

ADI 1 Add immediate operand to A without carry
AC! 0FFH Md immediate operand to A with cat~Y
SJI L + 3 Subtract from A without borrow (carry)
SBI L AND llB Subtract frcm A with borrow (carry}
AN! $ ·AND 7FH Logical "and" A with irnlliediate data
XRI 1111$0000B "Exclusive or" A with immediate data
ORI L AND l+l Logical "or" A with immediate data
CPI 'a, Comi:are A with immediate data . (same

as SUI except register A not changed)

LXI e3,el6 LXI B,100H I.Dad extended immediate to register i:air
(e3 must be equivalent to B,D,H, or SP)

5.3. Increment and Decrement Instructions.

Instructions are provided in the 8080 repetoire for incrementing or
decrementing single and double p:-ecision registers. The instructions ate

INR e3

OCR e3

INX e3

OCX e3

INR E

OCR A

INX SP

OCX B

Single precision increment register (e3
produces one of A, B, C, D, E, H, L, M)
Single precision decrement registe-r (~3
p:-oduces one of A, B, C, D, E, U, L; M)
Double precision increment register pair
(e3 must be equivalent to B,D,H, or SP)
Double precision decrement registe~ i:air
(e3 must be equivalent to B,D,H, or SP)

5.4. Data Movement Instructions.

14

•

•

•

•

Instructions which rrove data from memory to the CPU and from CPU to
meroory are given below

t!IJV e3,e3

LD\X e3

STAX e3

LHLD el6

SHLD el6

LD\ el6
STA el6
roP e3

Pl5H e3

IN e8
our e8
XTHL
POIL
SPHL
XCHG

IDV A,B

LD\X B

STAX D

LHLD IJ.

SHLD L5+x

LD\ Gamma
STA x~5
IOP PSW

Pl.BBB

IN 0
our 255

Move data to leftroost element from right
rrost element (e3 produces one of A,B,C
D,E,H,L, or M). K)V M,M is disallowed
Load register A from computed address
(e3 must produce either B or D)
Store register A to computed address
(e3 must produce either B or D)
Load HL direct from location el6 (double
precision load to H and L)
Store HL direct to location el6 (double
precision store from H and L to rnerory)
Load register A from address el6
Store register A into nerory at el6
I.Dad register pair from stack, set SP
(e3 must produce one of B, D, H, or PSW)
Store register pair into stack, set SP
(e3 must produce one of B, D, H, or PSW)
Load register A with data from port e8
Send data from register A to {X)rt e8
Exchange data from top of stack with HL
Fill program counter with data fran HL
Fill stack {X)inter with data frcm HL
Exchange DE pair with HL pair

5.5. Arithmetic Logic Unit Operations.

Instructions which act u{X)n the single µ:-ecision accumulator to perform
arithmetic aoo logic cperations are

ADD e3 ADD B

ADC e3 ADC L
SUB e3 SJB H

SBB e3 SBB 2

ANA e3 ANA l+l
XRA e3 XRA A
ORA e3 ORA B
CMP e3 CMP H
D\A

CMA.
S'IC

Add register given by e3 to accumulator
wi. thout carry (e3 must produce one of A,
B, c, D, E, H, or L)
Add register to A with carry, e3 as above
Subtract reg e3 from A without carry,
e3 is defined as above
Subtract register e3 from A with carry,
e3 defined as above
Logical "and" reg with A, e3 as above
"Exclusive or" with A, e3 as above
Logical "or" with A, e3 defined as above
Compare register with A, e3 as above
Decimal adjust register A based upon last
arithmetic logic unit operation
Complement the bits in register A
Set the carry flag to 1

15

ere
RLC

RIC

RAL

RAR

OM) e3 DAD B

Complement the carry flag
Rotate bits left, (re)set carry as a side
effect (high order A bit becomes carry)
Rotate bits right, (re)set carry as side
effect (low order A bit becomes carry)
Rotate carry/A register to left (carry is
involved in the rotate)
Rotate -carry/A register to right (carry
is involved in the rotate)

Double prec1s1on add register p:tir e3 to
HL (e3 must produce B, D, H, or SP)

5.6. Control Instructions.

The four ranaining instructions are categorized as control instructions,
and are listed below

HLT
DI
EI
NCP

6. ERROR .t-ESSAGES.

Halt the 8080 processor
Disable the interrupt system
Enable the interrupt system
No operation

wben errors occur within the assembly language ~ograrn, they are listed as
single character flags in the left.Irost "[X)Sition of the oource listing.. The
line in error is also echoed at the console oo that the oource listing .. need
not be examined to determine if errors are ~esent. The error codes are

D

E

L

N

0

p

Data error: element in data statement cannot be
placed in the specified data area

Expression error: expression is ill-formed and
cannot be canputed at assembly time

Label error: label cannot appear in this context
(may be duplicate label)

Not implemented: features which will appear in
future ASM versions (e.g., macros) are recognized,
but flagged in this version)

Overflow: expression is too complicated (i.e~, too
many pending operators) to computed, simplify it

Phase error: label does not have the same value on
two subsequent p:tsses through the program

16

•

•

R Register error: the value specified as a register
is not ccmpatible with the operation code

V Value error: operand encountered in expression is
improperly formed

Several error rressage are printed which are due to terminal error
conditions

NO SOJRCE FILE PRESENT

NO DIRECTORY SPACE

SOORCE FI LE NAME ERROR

SOURCE FILE READ ERROR

• OUI'Ptn' FILE mrTE ERROR .

C.ANNOI' CLOSE FI LE

7. A SAMPLE SESSION.

The file specified in the ASM command does
not exist on disk

The disk directory is full, erase files
which are not needed, and retry

Improperly formed ASM file name (e.g., it
is specified with "?" fields)

Source file cannot be read properly by th~
asserrbler, execute a TYPE to determine the
J;X>int of error

output files cannot be written ~operly, most
likely cause is a full disk, erase and retry

Output file cannot be closed, check to see
if disk is write protected

The following session soows interaction with the asserrbler and debugger in
the development of a simple asserrbly language program.

17

•

ASM SORT~

CP/H ASSEMBLER - VER 1 . 0

~ 1 SC ~ -fru at:ld.t~)
003H USE FACTOR ¾ J -btWe use.cl. oo To fF' (~d.ecl~
EH D OF A S·S E M BL Y

DIR SORT . *,;

SORT ASH ~"w<~ .f'i~
s·oRT BAK lo~J'~ l'--*ecl~~
SORT PR H fl'~. f,'4 Uo":\i:u~ ~ ~~)
SORT HE X vwid.t,"'f. c:otl..t. -hitL
A>TVPE SORT.PR~ ~,t. l~ r.,,... ____ A-----,.,

SORT PROGRAN IH CP/11 ASSEMBLY LANGUAGE ~~cJL\o~•i
0100 ~ _;

START AT THE BEGIHHIHG OF THE TRANSIENT PROGRAN AR

,~kd.~~rt.dt.
0100 2f4601._..) SORT ,
0103 3601
0105 214701
0108 3600

010A 7E
010B FE09
010D D21901

0110 214601
0113 7EB7C20001

0118 FF

COl1P :

ORG 100H

;ADDRESS SWITCH TOGGLE LXI
MVI
Ll<I
Ml/I

H, SIJ
M, 1
H, I
M, 0

;SET TO 1 FOR FIRST ITERATIOH
; ADDRESS INDEX

COMPARE
MDV
CPI
JHC

; I = 0

I IJITN . ARRAV SIZE
A,M ;A REGISTER= I
H-1 ; CY SET IF I < (H-.1>
COHT ; COHTIHUE IF I <= <N-2)

END OF O~E .PASS THROUGH DATA
LX I H, Sli! ; CHECK FOR · ZERO SI.JI TC HES
.MO\/ A, N ! ORA A! JNZ SORT ; END OF SORT IF SIJ=0

RST 7 ;GO TO THE DEBUGGER IHSTEAD OF RE P.

r~•t~-idlCOHTINUE THIS PHSS
ADDRESSING I, so LOAD A \I< I> ltHO REGISTERS . .

0119 5F16002148CONT, MOV E, .A! MY I D, 0 ! LXI H, AV! DAD D! DAD D
0121 4E792346 MO\/ C, M! MOV A, C ! rnx H! MDV B .• 11

LOI.J ORDER B'/TE 1H A Alm C, HIGH ORDER BYTE IH B

MOY HAND L TO ADDRESS AY(I+l>
0125 23 rnx ~

COMPARE YALUE WITH REGS COHTAIHIH~ AYCI>
0126 965778239E SUB t1 ! MOV D, A! MO\/ A, B ! HIX H ! SBB 11 ;SUBTRACT

BORROW S[T lF AV(I+l) > A\1(1)
012B DA3F01 JC INCi ;SKIP IF IH PROPER ORDER

CHECK FO R EQUAL VALUES
012E 82CA3F01 ORA D! JZ Itl(I ;Sl<IP IF A\l<I) = AY(l+t) •

•

•

•

•
0132 56702BSE MDV It, M ! 110V t1 ' B ! DCX H! MDV E, M
0136 7128722873 MOY M,C! DCX H! MO'v 11, D ! DCX H! 110V M, E

IHCRE11EHT SWITCH COUHT
013B 21460134 LXI H,SlJ! IHR 11

IHCRE11EHT I
013F 21470134C3IHCI, Ll<I H, I ! l HR M! JMI=> COMP

DEFIHITIOH SECTION
0146 00 SIJ ,

DATA
DB
DS

0 ;RESERVE SPACE FOR SWITCH COUNT
0147 I , 1 ;SPACE FOR lHDEX
0148 0S0064001EAV , Dhl

EQU
END

5,100, 30, 50, 20, 7, 1000, 300 , 100, -32767
000A = H.
0 l SC ~ ~t wa{e ua.l!AL

A>TYPE SORT . HEX..?

($-AY) / 2 ;~OMPUTE H INSTEAD OF PRE

: 10010000214601360121470136007EFE09D2190140 .
1 100110002146017EB7C20001FF5F16002148011988 ~ -r,.,.~ude._lJ'\
, 10012000194E79234623965778239EDA3F01B2CAA7

H~.f~ : 100130003F0156702BSE712B722B732146013421C7
: 07014000470134C30A01006E
: 10014800050064001E00320014000700E8032C01BB
, 0401580064000180BE
: 0000000000

~ dtf,W\ \'UV\.. A>DDT SORT. HEX,?

16K DDT YER 1. 0

LV\6 adcl.-~ 0-,. BJD ~--tr,._~) NEXT PC
dtm.u.-tt- adbess 01SC 0000

-XPj)

P=0000 100,f C\...a.,,,.tt fC-10 (00

aWw'Jt., - U FF FF,;> u.~aa -f~ 64S"S3c(sfq>s
r\"1.LbDI.IX

C0Z0H0E0J0 A=01:l 8=0000 D=0000 H=0000 S=0100 P=0100 LXJ H , 0 1 4 6 •~ 0 1 0 0
- T l 0; -hou to" <;f~rs-
C020t10E0I0 A=01 8::a0000 D =0 0 00 H=0146 S=0100 P=0100 LXI H,0146
C020110E010 A=01 8=0000 D=0000 H=0146 $=0100 P=0103 11 VI 11, 0 1
C020M0E0l0 A=01 8=0000 D=00 00 H=0146 S=0100 P::0105 LXI H,0147
C0Z0M0E0J0 A=01 B=0000 D=0000 H=0147 S=-0100 P::0108 M'✓ J t1, 0 0
C020M0E0J0 A=01 B=0000 D=0000 H=0147 S=0100 P=010A MOV A, 11
C020M0E0J0 A=00 B=0000 D=0000 H=0147 S=0100 P=010B CPI 09
C1Z0M1E0l0 A=00 B=0000 D =00 00 H=0147 S=0100 P=010D JHC 0 11 9
ClZ0111E0I0 A=00 8=0000 D=0000 H=0147 S=0100 p:::0110 L XI H., 0146
C120M1E0J0 A=00 8=0000 D=0000 H=0146 5=0100 P=,0 11 3 MOV A, t1
C1Z0H1E0I0 A=01 8=0000 D=0000 H=0146 S=0100 p .. 0 11 4 ORA A
C0Z0110E0I0 A=01 9=0000 D=0000 H=0146 S=0100 P= 0 11 5 JNZ 0100
C0Z0H0E0I0 A=0l 8=0000 D=0000 H=0146 S=0100 P=0100 LXJ H, 0146
C0201"10E0J0 A=01 8=0000 D=0000 H=0146 S=010·0 P=0103 t1 V l M, 0 1
C0Z0M0E0J0 A=01 8=0000 D=0000 H=0146 S=0100 P=0105 LXJ H,0147
C0201'10E0J0 A=01 8=0000 D=0000 H=0147 S=0100 P=0108 MVI M,00
C0Z0110E0I0 A=01 8 =0 00·0 D=00 00 H= 0J 47 S=0100 P=010A 11OV A,1'1*0108
--A10D

5"',r"'- c<t _J 010D JC 11 9 .,2 cWt~t--fo a j4 o~ ca~ 19 01 10 iJ /f8H

-XP;

P=0108 10 ~ Ye~+ '('Y-Ojv'O.IAA 0,1,ll,\,,~ .lottt:.l-b loe'5·,ri~,l'lj cf-projram..

' -T 10 +race ~"tt-01'\ -t-(,1,f I OH s-krs
'>l

C0Z0N0E0I0 A=00 0 =0 00·0 D=0000 H=0147 S=0100 P=0100 LXI H, 0 l 4 6 · lfV'6"-~
M, 0 1 1 \ll--C0Z0M0E010 A=00 0=0000 D=0000 H=0146

C020M0E0I0 A=00 0=0000 D=0000 H=0146
C020M0E010 A=00 0=0000 D =0 0 00 H=0147
C020110E010 A=00 0=0000 D=0000 H=0147
C020110E0I0 A=00 0=0000 D =0 0 00 H=0147
C 120M1 E01.0 A=00 8=0000 D=0000 H=0147
C1201'11E010 A=00 8=0000 [1=0000 H=0-l 47
C1Z0M1E0I0 A=00 8=0000 D=0000 H=0147
C1Z0M1E010 A=00 8=0000 D=0000 H=0147
C120M1E010 A=00 8=0000 D=0000 H=0148 ·i 0 Z 0 M 1 E 0 l 0 A=00 8=0000 D=0000 H=0148

0Z0M1E0I0 A=00 8=0000 D=00·00 H=0148
C020111E010 A=00 B=000S D=.0000 H=0148
C0Z0111E0I0 A=05 0=0005 D=0000 H=0148
C0Z0M1E0J0 A=05 8=0005 D=0000 H=0149
-L 10~

0100 LXI H, 014 .6
0103 HYI M, 0 1
01 ,05 LXI H,0147
0108 MYI
010A MOV
0108 CPI
010D JC

M,00
A,M
09
'01 l 9

l lst SO\M.l cc,d.e
.fvtMA lDO~

0110 LXI H,0146
0113 MOY A,M
0114 ORA A
0 1 15 JNZ 0100
-L;

01l8 RST 07
0119 MOY E,A
0llA MYI D,00
011C LXI H,0148

S= 0.100
S=0100
S=0100
S=0100
S=0100
S=0100
S=0100
S=0100
S=0100
S=0100
S=0100
S=01 €H3
S=0100
S=0100
$=0100

P=0103 MVI
P::0105 LXI
P=0108 MVI
P=010A 110V
P=010B CPI
P=010D JC
P= 0 11 9 t10V
P•=011A MVI
P=011C L XI
P= 0 11 F DAD
P=0120 DAD
P=.0121 MOV
P=0122 MO\/
P=0123 HIX
P=0124 MOV

~<..cit)~q_-t1C..
br~F~IA.t

H , 0 1 4 7 .._,(6
11,00 ~,'{-

A,M)
09 ✓
0 11 9
E,A
D,00
H, 0148
D
D
Lr1
A,C
H
B, M•812:5

~

- ak,v4 h~ l,u~~ Y-CA!i,'1,Cf · . + · 1 H'
~L~ ~ ~ ?c. (ori.~J ~w.{ YU.IL l"' v-et,.\ ,vu -ro I 16

- G , 1 1 B; ~ ~Y°1'11t,\. n,~

• 012 7 "5-bprt:d w~11--\ a."'- ex.\evw,.l \~rupf 7 -trrM-l 1v--i::M-f yt,-1,\el (-p>"~rlli.« was

-T4i \oo~ oA- IOOf1~ '?ro:ti.lM l'-' --\--.«e mok 1 lOCf•~ lW.<eh~l~~)
C0Z0M0E0I0 A=38 8=0064 D=0006 H•0156 S=0100 P=0127 MOY D,A
C020M0E010 A=38 8=0064 D=3806 H=0156 S=0100 P=0128 MOY
C020M0E010 A=00 8=0064 D=3806 H=01S6 S=0100 P=0129 INX
C020M0E010 A=00 0=0064 D=3806 H=0157 S=0100 P=012A SBB

A,B
H
M it<0 12 B

-D148

0148 0s ae 01 00 14 00 tE
0150 32 00 64 00 64 00 2C
0160 00 00 00 00 00 00 00

~M~ t~ ~, b'4" -rrojr{l.w Joes~t s-tep .
00
01 EB f13 01 80 00 00 00 00 2 . D. D. ,
00 00 iJd 00 00 00 00 00 00 zo

•

•

•

-"~ Yett.A.f'V\. ¼ Cf /M.

DDi SORT . HEX.; reloAd -tk meMOVj lfhAf

16K DDT VER 1. 0
HEXT PC
015C 0000
-XP

P=0000 100J Set fC. -tt> \,~1~11~~ ot f°'jYAA't

- L 10 D; ll~ baJ q,cot!t

010D JHC 0119/
0110 LXI H,0146

- a.~ ll* w~~ ru.loOt.l.+
-A 10 DJ 4!,~\L ~ "'cot{e.

010D JC ti~

011~

-L100; \\~\- ~~ se~ of 'fvi~
0100 LXI H,0146
0103 MVI M,01
0105 LXI H,0147
0108 M'n M,00
- oJoo.k {,st \N~tl,. tv-bocA.t

- A 10 3;. C.W>.Wf \'sw.l+cL/ ~"'-~+i:..h~ ~ {, ¢r,1

0103 NYI 11, 0.,,2

0105,2

- ,.. c rL-bw-"'- --\o Cf/µ_ w L~ d (- C. (Gf v.><N~ CA.s wel lJ
SAYE 1 SORT . COM; "5Avl 1 fOi~ (7.~{, ½t~s,f~ 1-lJOl-l-4v1.FfH.) OY\ dis!£. \.~ CA~

. we ~o.ve.. -to Y-e.lood. lm"
A >DDT SORT . CO H; y-~":AZ1-v1° 1)-01" w~

SO.vtti ~~VVIOV~ \~~e
16K DDT VER 1 . 0
HEXT PC . .
0 2 0 0 0 1 0 0 "Q()M'' .fde.. (llwo.:rs. str>-r~ wA·~ o.,dAf$$ l 00

~

- G~ rlA."'4 -tk~ v~o:,w·o.lM + nl',w\ 1' C.,. I oo H •

•011 a 1'VOl7'<>-~~c1. ~°"'r ce..sr1) e."'e.01,1.~~
.... D148

0148 05 00 07 00 14 00 1 E
0150 32 00 64 00 64 00 2C 0 1 E.8 0 3 0 1 8 0 0 0 0 0 0 0 0 0 2 . D . D . , , . . .
0160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0170 00 00 00 ~0 00 00 00 00 00 00 00 00 00 00 00 00

-GI; f~rlA,. 4o r!..r /M. ZI

.. ,

M, 0

H, I

CP/N ASSEMBLER - YER 1.0

01 SC ~ ~~ -k, ~e.
003H USE FACTOR
EHD OF ASSEMBLY

; ADDRESS I HDEX

;SET TO 1 FOR FIRST ITERATION

;ADDRESS INDEX

;ZERO SlJ

; ADDRESS IHDE>{

;COHTIHUE IF I <= <H-2>

nnr so RT . H£x~ M ra,"M44 CWl,t.s

161< DflT YER 1.0
NEXT PC
015(: 0000
-G' 1(10_;

•0118
-D148.J

14 00
r c1o..1o-- 5~tal
1 E 0 0 0148 05 00 07 00

0150 32 00 64 00
0160 00 00 00 00

64 00 2C 0 l EB 03 0 1 80 00 00 00 00 . 2.D . D. ,
00 00 00 00 00 00 00 00 00 00 00 Et0

- 0.bOY-t wtt\.. TiAlo,~t

- G ~ re-tu.t"U,. -\v eJ' (M- -1(7""~ dttk.s

•

C

..._,,

	VImage-059
	VImage-060
	VImage-061
	VImage-062
	VImage-063
	VImage-064
	VImage-065

