FISH KILLING POTENTIAL OF A CYLINDRICAL CHARGE EXPLODED ABOVE THE WATER SURFACE

BY JOHN F. GOERTNER
RESEARCH AND TECHNOLOGY DEPARTMENT

12 DECEMBER 1978

Approved for public release, distribution unlimited.

NAVAL SURFACE WEAPONS CENTER
Dahlgren, Virginia 22448 • Silver Spring, Maryland 20910
Report: Naval Surface
Author: J. P. Cooper
Title: Fish Killing Poc.
REPORT DOCUMENTATION PAGE

<table>
<thead>
<tr>
<th>Field</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPORT NUMBER</td>
<td>NSWC/WOL TR 77-90</td>
</tr>
<tr>
<td>Title (and Subtitle)</td>
<td>Fish Killing Potential of a Cylindrical Charge Exploded Above the Water Surface</td>
</tr>
<tr>
<td>Author(s)</td>
<td>John F. Goertner</td>
</tr>
<tr>
<td>Performing Organization Name and Address</td>
<td>Naval Surface Weapons Center White Oak, Silver Spring, Maryland 20910</td>
</tr>
<tr>
<td>Report Date</td>
<td>12 December 1978</td>
</tr>
<tr>
<td>Number of Pages</td>
<td>39</td>
</tr>
<tr>
<td>Distribution Statement (of this Report)</td>
<td>Approved for public release, distribution unlimited.</td>
</tr>
<tr>
<td>Distribution Statement (of the abstract entered in Block 20, if different from Report)</td>
<td></td>
</tr>
<tr>
<td>Key Words (Continue on reverse side if necessary and identify by block number)</td>
<td>Explosions Lethal Ranges Airburst Underwater Explosions Swimbladder Fish Fish-kill</td>
</tr>
<tr>
<td>Abstract (Continue on reverse side if necessary and identify by block number)</td>
<td>Two special air-burst test geometries are compared with two typical underwater explosion test geometries in order to determine the relative hazard to swimbladder fish. The method consists of approximate calculations for extreme values of compression and extension of the fishes' gas-filled swimbladder in response to the explosion pressure waves. The kill probability is then calculated from the ratio of maximum to minimum radius during the oscillatory response using an experimentally determined function. (Cont.)</td>
</tr>
</tbody>
</table>
Calculations are made for 1000-lb and 64,000-lb cylinders of H-6 explosive (L/D = 3.65) fired end-on, 1.3 diameters from the water surface. By assuming a uniform fish-density distribution throughout the water it is estimated that on the basis of fish-killed/kg explosive a typical underwater explosion is some 1000 times more hazardous for killing fish than these air-burst tests.
SUMMARY

This report deals with the prediction of explosion injury to fish with swimbladders and is part of a continuing study of the effects of underwater explosions on marine life. Swimbladder fish are particularly vulnerable to explosions, and this group includes the majority of fish with sports and commercial value. This study will result in an improved capability to predict such effects, and will be useful in connection with the testing of new explosives and warheads at sea. The case considered here is an application of a general method developed at the Naval Surface Weapons Center to a special test configuration in which the explosive charge is above the water surface.

This study is part of the ordnance pollution abatement program of the Naval Sea Systems Command and was supported by Task SEA 55001/19373.

The author is indebted to George A. Young and Ermine A. Christian for valuable suggestions during the course of this work.

JULIUS W. ENIG
By direction
CONTENTS

1. INTRODUCTION ... 5
2. METHOD ... 6
3. CALCULATIONS .. 7
 3.1 Pressure-Time Inputs ... 7
 3.2 Representative Fish Specimens 7
 3.3 Kill Probability Calculations 12
 3.4 Response to Exponential Waves of Short Duration 13
 3.5 Patching of Solutions .. 16
4. RESULTS .. 18
 4.1 General Observations ... 18
 4.2 Kill Probability Contours .. 18
 4.3 Nominal Fish Kill ... 23
5. CONCLUSION ... 25

APPENDIX A. MEAN KILL VOLUME .. A-1
ILLUSTRATIONS

Figure	Page
2.1 Underwater Pressure-Time Signatures Measured on 8-lb Tests (HOB = 0.28 m) | 8
3.1.1 Sketch Showing Pressure-Time Signatures Used to Calculate Kill Probabilities (1000 lb H-6; Horizontal Range = 18.3 meters) | 10
3.1.2 Sketch Showing Pressure-Time Signatures Used to Calculate Kill Probabilities (64,000 lb H-6; Horizontal Range = 73.2 meters) | 11
4.2.1 Comparison of Predicted Kill Probability for 1000-lb Air Burst Test with Contours Calculated for 0.57 kg Pentolite at 9 m Depth - 21.5-cm White Perch | 20
4.2.2 Comparison of Predicted Kill Probability for 64,000-lb Air Burst Test with Contours Calculated for 32 kg Pentolite at 9 m Depth - 21.5-cm White Perch | 21

TABLES

Table	Page
1.1 Air Burst Test Parameters | 6
3.2.1 Fish Input Parameters | 12
3.5.1 Kill Probability Calculations | 17
4.2.1 Variation of Kill Probability as a Function of Fishes' Depth | 22
4.3.1 Water Volumes Enclosed by Kill Probability Contours | 24
4.3.2 Estimated Nominal Fish Kill | 24
FISH KILLING POTENTIAL OF A CYLINDRICAL CHARGE
EXPLODED ABOVE THE WATER SURFACE

1. INTRODUCTION

The Naval Surface Weapons Center is currently carrying out a program of explosive tests designed to determine the underwater pressure field from a specially shaped charge exploded in air. This report presents a preliminary analysis of the potential of this special test configuration for inflicting unwanted fish-kill. This analysis is restricted to swimbladder fish and is based on the data and method developed in Reference 1.

The method consists of an approximate calculation for the extreme values of compression and extension of the fishes' gas-filled swimbladder in response to the explosion pressure wave. The calculations are made for the damped radial oscillations of a spherical air bubble in water. The kill probability is then calculated as an experimentally determined function of the ratio of maximum to minimum radius during the oscillatory response.

Test Configuration. The test configuration is equivalent, for the purposes of this report, to a cylinder of H-6 explosive (length/diameter ratio = 3.65, axis vertical) centrally initiated at a scaled height, \(h/W^{1/3} = 0.182 \, \text{m/kg}^{1/3} \), above the water surface. Tests using three different explosive weights — 8, 1000, and 64,000 lb H-6 — are considered. Table 1.1 lists the pertinent test parameters.

Table 1.1. Air Burst Test Parameters

<table>
<thead>
<tr>
<th>Explosive Weight*</th>
<th>8 lb</th>
<th>1000 lb</th>
<th>64,000 lb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(3.63 kg)</td>
<td>(450 kg)</td>
<td>(29,000 kg)</td>
</tr>
<tr>
<td>Linear Scale Factor</td>
<td>1/20</td>
<td>1/4</td>
<td>1</td>
</tr>
<tr>
<td>Height of Burst**</td>
<td>0.28 m</td>
<td>1.40 m</td>
<td>5.60 m</td>
</tr>
</tbody>
</table>

* H-6 explosive, RDX/TNT/AL/WAX (45/29/21/5).
** Measured to point of initiation at center of charge.

Section 2 outlines the method used for this analysis. Section 3 gives the method and some of the details of the calculations. Sections 4 and 5 present the results and conclusion of this study.

2. METHOD

The method followed in this study was to start from underwater pressure-time signatures measured on 8-lb tests. Figure 2.1 shows the complete set of pressure signatures measured on three identical tests.

Selected pressure signatures were scaled up to the 1000-lb and 64,000-lb test configurations and were then used to calculate kill-probabalilites for particular sizes and species of swimbladder fish. (Since the 8-lb tests were carried out in a small test pond, fish-kill was not calculated for this scale.)

The pressure signatures selected for kill-probability calculations were those at the greatest horizontal range from the charge (see Figure 2.1), since these are the most important for estimating the extent of the region of significant kill. We then compared the calculated kill probabilities for the 1000-lb and the 64,000-lb air burst tests with kill probabilities calculated for comparable underwater explosion tests.

2. Limited report by J. F. Pittman, Jan 1978; regarding DAWS POND Program II. A replicate set from the closest-in string of gages which was obtained on the opposite side of the charge has been omitted from the figure.
3. **CALCULATIONS**

3.1 **PRESSURE-TIME INPUTS.** The first step in these calculations was to sketch-in average curves for the three sets of pressure-time signatures at the greatest horizontal range (3.66 m) shown in Figure 2.1. These average curves were then approximated either by two successive exponentials or by a square step followed by an exponential, since these simple wave forms could be calculated by the method presented in Reference 1.

These approximating pressure-time signatures were then scaled up from 8 lb to 1000 lb and 64,000 lb -- the corresponding distances and times were increased in the ratio of the linear scale factor (or \(W^{1/3}\)) and pressures were held constant. The scaled approximating pressure-time signatures for the 1000-lb and 64,000-lb test configurations are shown in Figures 3.1.1 and 3.1.2, respectively. As in Reference 1 the exponential portions were calculated using two separate exponential segments joined at \(t = 1.8 \theta\)

\[
p = \text{PMAX} \, e^{-t/\theta} \quad (t \leq 1.8 \theta) \quad (3.1.1)
\]
\[
p = 0.25 \, \text{PMAX} \, e^{-t/4.3 \theta} \quad (t > 1.8 \theta) \quad (3.1.1a)
\]

The parameter \(\theta\) was taken as the time for the measured pressure to drop to \(1/e\) of its peak value, PMAX.

3.2 **REPRESENTATIVE FISH SPECIMENS.** The fish selected for this study were Striped Bass (or Rockfish) and White Perch. These are the fish expected to be present during the 1000-lb tests in the Potomac River during April, May, and June, at the Dahlgren test site of the Naval Surface Weapons Center. For each species a single representative size was selected for this study -- 38-cm fork length for Striped Bass, 17-cm for White Perch. In addition, calculations were done for 21.5-cm White Perch in order to compare kill probabilities calculated for the air burst tests with kill probabilities previously calculated for charges detonated underwater (Reference 1). Table 3.2.1 summarizes the fish input data for these calculations.
FIG. 2.1 UNDERWATER PRESSURE-TIME SIGNATURES MEASURED ON 8-LB TESTS (HOB = 0.28m)
FIG. 2.1 (CONTINUED)
FIG. 3.1.1 SKETCH SHOWING PRESSURE-TIME SIGNATURES USED TO CALCULATE KILL PROBABILITIES (1000 LB H-6; HORIZONTAL RANGE = 18.3 METERS)
FIG. 3.1.2 SKETCH SHOWING PRESSURE-TIME SIGNATURES USED TO CALCULATE KILL PROBABILITIES (64,000 LB H-6; HORIZONTAL RANGE = 73.2 METERS)
Table 3.2.1. Fish Input Parameters

<table>
<thead>
<tr>
<th></th>
<th>Fork $\frac{L}{(cm)}$</th>
<th>Effective Bladder Radius $(A_i)_o$ $\frac{(cm)}{}$</th>
<th>$(A_i)_o/L$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Striped Bass</td>
<td>38</td>
<td>1.60</td>
<td>0.0422</td>
</tr>
<tr>
<td>White Perch</td>
<td>17</td>
<td>0.94</td>
<td>0.0553</td>
</tr>
<tr>
<td>White Perch4</td>
<td>21.5</td>
<td>1.18</td>
<td>0.055</td>
</tr>
</tbody>
</table>

1/The length measured from the most anterior part of the head to the deepest point of the notch in the tailfin.

2/Reference 1, Equation 4.2.1

3/Reference 1, Equation 3.1.8

4/For comparison with underwater burst calculations

3.3 KILL PROBABILITY CALCULATIONS. These were done by the method presented in Reference 1. Basically, this consists of calculating the damped oscillatory response (radial oscillations) of a spherical air bubble corresponding to the fishes' swimbladder. This oscillatory response supplies the calculated damage parameter

$$Z = X + Y$$ \hspace{1cm} (3.3.1)

where

$$X = -100 \ln \frac{A_{MIN}}{A_i}$$ \hspace{1cm} (3.3.2)

$$Y = 100 \ln \frac{A_{MAX}}{A_i}$$ \hspace{1cm} (3.3.3)

Where \ln is the natural logarithm, A_i is the initial at-rest bubble radius, and A_{MIN} and A_{MAX} are the smallest and largest radii during the oscillatory response.* Note, that we choose not to combine Equations 3.3.1,2,3 into $Z = 100 \ln \frac{A_{MAX}}{A_{MIN}}$ in order to emphasize the fundamental independence of the damage parameter components, X and Y.

*In this study A_{MAX} occasionally occurred prior to A_{MIN}, and this was permitted even though this has not happened under the testing conditions studied to date. (However, had we not used the occasional A_{MAX} values occurring prior to A_{MIN} the results of this study would still be, for practical purposes, identical.)
The kill probability, \(p \), is then calculated as

\[
p = \frac{1}{1 + \exp[-0.055(Z-125)]}
\]

(3.3.4)*

This equation represents underwater explosion test data from some 1500 caged Spot and White Perch over a wide range of explosive test conditions. Equation 3.3.4 was used for predicting the Striped Bass kill as well as for White Perch, since unpublished preliminary results with 16 species of fish indicate that Equation 3.3.4 applies to the majority of swimbladder fish.**

3.4 RESPONSE TO EXPONENTIAL WAVES OF SHORT DURATION. The method used in Reference 1 to calculate the oscillatory response to exponential waves was to patch together solutions to successive square steps of half-period duration. This solution breaks down, however, as the time constant \(\theta \) becomes less than the duration of the calculated first half-period of the motion, and the calculated size of the first compression gets too small. This comes about because, in the limit as \(\theta \) becomes smaller and smaller, the first approximating step takes on the value one-half \(P_{MAX} \), the average of the initial and final pressures—and consequently, the damage parameter, \(X = -100 \ln \frac{A_{MIN}}{A_i} \), does not go to zero as \(\theta \) approaches zero.

Impulsive Loading Approximation. This approximation is for the limiting case of pulses of infinitely short duration. Under impulsive loading the initial radial velocity \(v_i \) of the bubble is given by

\[
v_i = -\frac{I}{pA_i}
\]

(3.4.1)

*Reference 1, Equation 3.2.1

**Equation 3.3.4 describes explosion test results for 10 of the 16 species tested. The other 6 species required larger values for \(Z \) (= 125 in Equation 3.3.4).
where \(\rho \) is the density of the water and \(I = \int p \, dt \), the applied impulse.\(^3\) In order to extend the range of usefulness of this approximation we compute the applied impulse at \(t = 0 \) as

\[
I = \int_{0}^{\Theta} p(t) \, dt
\]

\[
= \text{P MAX} \times \Theta \times [1 - e^{-1}]
\]

\[
= 0.632 \times \text{P MAX} \times \Theta \quad (3.4.2)
\]

The total energy \(Y \) following impulsive loading is given by*

\[
Y = \frac{3}{2} \rho \, V_i \, V_i^2 + p_i \, V_i + \frac{p_i \, V_i}{\gamma - 1}
\]

(3.4.3)

where \(p_i \) and \(V_i \) are the initial pressure and volume of the bubble, and \(\gamma \) is the adiabatic exponent (\(= 1.4 \) for air). In Equation 3.4.3 the first term is the kinetic energy imparted to the surrounding water by the impulsive loading, the second the potential energy of the surrounding water, and the third the internal energy of the air inside the bubble.

From the total energy \(Y \) we calculate the dimensionless bubble oscillation parameter \(k \) used to describe the motion

\[
k = \frac{1}{\gamma - 1} \left(\frac{Y}{p_i V_i} \right)^{-\gamma}
\]

(3.3.3)**

Combining 3.4.1, 3.4.3, and 3.4.4 we can express \(k \) in terms of the impulse and initial bubble radius

* Reference 1, Equation A1
** Reference 1, Equation A13

\[k = \frac{1}{\gamma-1} \left[\frac{\gamma}{\gamma-1} + \frac{3}{2} \left(\frac{1}{\rho_0 p_1} \right)^{\gamma} \right] \]

(3.4.5)

Damage Parameters \(X \) and \(Y \). The problem is to calculate the damage parameters \(X \) and \(Y \), Equations 3.3.2 and 3.3.3, respectively. Thus we must calculate \(AMIN/A_1 \) and \(AMAX/A_1 \). We proceed as follows.

First, using \(k \) (Equation 3.4.5) we look up \(AMIN/AMAX \) in Table A-1 of Reference 1. Next, we calculate the pressure ratio \(\frac{PMIN}{Pi} \)

\[\frac{PMIN}{Pi} = \frac{(\gamma-1) \left[\left(\frac{AMIN}{AMAX} \right)^3 \right]}{\left(\frac{AMIN}{AMAX} \right)^3 \left[1 - \left(\frac{AMIN}{AMAX} \right)^3(\gamma-1) \right]} \]

(3.4.6)

where \(PMIN \) is the air pressure at the first compression.

Finally, using the adiabatic pressure-volume relationship we get

\[\frac{AMIN}{A_1} = \left(\frac{PMIN}{Pi} \right)^{-\frac{1}{3\gamma}} \]

(3.4.7)

and

\[\frac{AMAX}{A_1} = \left(\frac{AMIN}{A_1} \right) \left(\frac{AMAX}{AMIN} \right) \]

(3.4.8)

With increasing \(\Theta \) both the first compression and the subsequent expansion calculated by this approximation become too large. Thus both damage parameters, \(X = -100 \ln \frac{AMIN}{A_1} \) and \(Y = 100 \ln \frac{AMAX}{A_1} \) become progressively too large with increasing values of \(\Theta \).

Which Approximation to Use. For those cases where the calculation by half-period square steps showed θ to be the order of a half-period or less, we calculated the fish damage parameter, $Z = X + Y$, by both approximations. Since the systematic errors in both of these approximations result in values of Z which are too high-- square steps for θ values too small, impulse for θ values too large--we calculated these cases by both approximations and selected the one giving the smallest value of the damage parameter Z. It turned out that the crossover for the Z values calculated by the two approximations occurred for θ values equal to approximately six-tenths of the first half-period calculated by square steps.

3.5 PATCHING OF SOLUTIONS. The response of the equivalent bubble to the pressure-time signature was determined separately for each of the two pulses shown in Figures 3.1.1 and 3.1.2. To facilitate the calculations the response to the second pulse was calculated as starting from rest at the initial ambient radius and pressure, R_1 and p_1. Results of the separate calculations were then scanned to obtain the extreme values of the radius, R_{MIN} and R_{MAX}. Table 3.5.1 summarizes the results of these calculations. The values of X and Y selected to calculate the damage parameter, $Z = X + Y$, are indicated with a check mark. Note that the value of X or Y selected is the maximum of the value calculated for the first pulse and that second pulse value corresponding to the method of calculation--square or impulsive loading--selected according to the criterion given in Section 3.4. For example, for the first entry (first row) in Table 3.5.1, the "Impulsive Loading" calculation was used for the second pulse, since this value of $Z = X + Y$ (48 + 38) is less than the value calculated by "Square Steps" (102 + 40). Thus, the value for Z representing the combined response to the first and second pulse is the sum of 64, the greatest X value (taken from first pulse having discarded the value 102), and 38, the greatest Y value (taken from second pulse having discarded the value 40).

Additional Details. Response to the first pulse for the two shallowest depths (Figures 3.1.1 and 3.1.2) was calculated by the method of Reference 1 by setting TPOS (Reference 1, Figure 3.1.1) equal to the time of arrival of the second pulse. Response to the first pulse (square step) for the deepest depth was calculated setting PMAX equal to the step pressure and θ equal to approximately 10^6 times the duration of the step. Other parameters were set as follows: TPOS = step duration, PNEG = plateau pressure following step, and DTNEG = duration of plateau pressure.
TABLE 3.5.1 KILL PROBABILITY CALCULATIONS

<table>
<thead>
<tr>
<th>Explosive Test</th>
<th>X (m)</th>
<th>Y (m)</th>
<th>Fish Length (cm)</th>
<th>X = -100 ln AMIN/A_1</th>
<th>Y = 100 ln AMAX/A_1</th>
<th>Z = X + Y</th>
<th>Kill Prob. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>17</td>
<td>64</td>
<td>102</td>
<td>48</td>
<td>3</td>
<td>40</td>
<td>38</td>
</tr>
<tr>
<td>3.05</td>
<td>21.5</td>
<td>62</td>
<td>102</td>
<td>37</td>
<td>6</td>
<td>43</td>
<td>31</td>
</tr>
<tr>
<td>38</td>
<td></td>
<td>59</td>
<td>100</td>
<td>27</td>
<td>11</td>
<td>47</td>
<td>23</td>
</tr>
<tr>
<td>1000 LB</td>
<td>18.3</td>
<td>82</td>
<td>102</td>
<td>83</td>
<td>6</td>
<td>31</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>21.5</td>
<td>80</td>
<td>98</td>
<td>65</td>
<td>11</td>
<td>34</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>76</td>
<td>97</td>
<td>47</td>
<td>16</td>
<td>38</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>82</td>
<td>111</td>
<td>144</td>
<td>0</td>
<td>16</td>
<td>86</td>
</tr>
<tr>
<td>12.2</td>
<td>21.5</td>
<td>82</td>
<td>109</td>
<td>118</td>
<td>5</td>
<td>22</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>82</td>
<td>104</td>
<td>87</td>
<td>0</td>
<td>30</td>
<td>59</td>
</tr>
<tr>
<td>64,000 LB</td>
<td>73.2</td>
<td>50</td>
<td>92</td>
<td>—</td>
<td>0</td>
<td>9</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>21.5</td>
<td>50</td>
<td>89</td>
<td>—</td>
<td>0</td>
<td>13</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>50</td>
<td>86</td>
<td>—</td>
<td>0</td>
<td>17</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>58</td>
<td>80</td>
<td>—</td>
<td>0</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>21.5</td>
<td>57</td>
<td>79</td>
<td>—</td>
<td>0</td>
<td>6</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>56</td>
<td>77</td>
<td>—</td>
<td>0</td>
<td>8</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>44</td>
<td>75</td>
<td>—</td>
<td>1</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>48.8</td>
<td>44</td>
<td>74</td>
<td>—</td>
<td>2</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>44</td>
<td>73</td>
<td>—</td>
<td>0</td>
<td>1</td>
<td>—</td>
</tr>
</tbody>
</table>

/ Value used to compute kill probability
Response to the second pulse at all depths was calculated both by the method of Reference 1 (square steps) and by the impulsive loading approximation described in Section 3.4. As described in Section 3.4, the method giving the smallest value for $Z = X + Y$ was then selected to represent the response to the second pulse.

4. RESULTS

4.1 GENERAL OBSERVATIONS. The final column of Table 3.5.1 lists the kill probabilities corresponding to the calculated fish damage parameter Z for the representative 1000-lb and 64,000-lb test conditions selected for this study. Relative to the uncertainties inherent to this study, the variation of kill probability with fish size is not great. This factor of two variation at the two shallowest locations for the 1000-lb test geometry is largely due to the variable response of the different sized swimbladders to impulsive loading by the second pressure pulse.

One would expect the longer duration pressure pulses of the 64,000-lb test geometry to cause larger kill probabilities at corresponding scaled locations. Except for the marginal case of the shallowest gage location this does not occur, since the effect of 4 times greater depth at corresponding scaled locations on the 64,000-lb test more than offsets the effect of longer pulse durations. This generally lesser kill probability at corresponding locations of the 64,000-lb test geometry is a direct result of increased hydrostatic pressure suppressing the amplitude of swimbladder oscillation.

4.2 KILL PROBABILITY CONTOURS. To give meaning to these kill probability results we compare them to similar calculations for underwater explosions. Figures 4.2.1 and 4.2.2 show contours of constant kill probability calculated for charge weights of 0.57 and 32 kg pentolite respectively, exploded at a depth of 9 meters.*

*H-6 is more energetic than pentolite. It probably takes about 1.1 to 1.2 times as much pentolite on a weight basis to produce roughly equivalent underwater pressure fields in the air-burst and underwater-burst configurations considered in this report. No "equivalent weight" corrections were made in doing the comparisons for this report.
The three kill probabilities calculated at each air burst test geometry--1000-lb and 64,000-lb--are also shown (enclosed by solid circles) on Figures 4.2.1 and 4.2.2. In the following paragraphs we will use these plots to make order-of-magnitude estimates of the fish-killing potential of these four explosion test geometries.

The computed kill probability data for the underwater explosions is more complete than that for the air bursts. For the purposes of this report the author has sketched in (dashed curves, Figures 4.2.1 and 4.2.2) possible extrapolations to the 50% and 10% kill contours. These extrapolations are made in lieu of further computations because they do not affect the order-of-magnitude conclusions of this report. (Were it required, the author does not foresee any difficulty in extending these contours by further computations to shallower depths and also to the region directly beneath the charge.)

For the air burst tests our data is meager. About the best we can do is a crude estimate for a single kill probability contour for each test configuration. For the 1000-lb air burst test (Figure 4.2.1) we take as an estimate for the region of greater than 50% kill the shaded area--a cylinder of water 20 meters in radius and 25 meters deep.

In order to estimate the lower boundary for 50% kill on the 1000-lb air burst test we needed more than the three kill probabilities listed inside the solid circles (Figure 4.2.1). Thus, in order to estimate the falloff of the kill probability with increasing depth we calculated what is probably an upper bound by using the pressure-time signature measured at the deepest gage (Figure 3.1.1) and calculating the kill probability corresponding to this signature as a function of hydrostatic pressure (different fish depths). The kill probabilities listed inside the dashed circles of Figure 4.2.1 were obtained this way. (Table 4.2.1 gives the complete results of these calculations where only the fishes' depth was varied.)

For the 64,000-lb air burst test we take as an estimate for the region of greater than 10% kill a cylinder of water 70 meters in radius and 50 meters deep (shaded area, Figure 4.2.2).
HORIZONTAL RANGE (METERS)

FIG. 4.2.2 COMPARISON OF PREDICTED KILL PROBABILITY FOR 64,000-LB AIR BURST TEST WITH CONTOURS CALCULATED FOR 32 KG PENTOLITE AT 9 M DEPTH - 21.5-CM WHITE PERCH
Table 4.2.1.
Variation of Kill Probability as a Function of Fishes' Depth

21.5-cm White Perch

\[p(t) = P_{\text{MAX}} e^{-t/\theta} \colon \quad P_{\text{MAX}} = 2.28 \text{ MPa}, \quad \theta = 0.200 \text{ msec} \]

<table>
<thead>
<tr>
<th>Depth (meters)</th>
<th>Fish Damage Parameters</th>
<th>Kill Probability (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>113 23 137</td>
<td>65</td>
</tr>
<tr>
<td>20</td>
<td>93 18 111</td>
<td>32</td>
</tr>
<tr>
<td>30</td>
<td>80 16 96</td>
<td>17</td>
</tr>
<tr>
<td>40</td>
<td>71 14 84</td>
<td>10</td>
</tr>
<tr>
<td>50</td>
<td>63 13 76</td>
<td>6</td>
</tr>
</tbody>
</table>
4.3 NOMINAL FISH KILL. In order to assess the fish-killing potential of an explosion we define a "Nominal Fish Kill" based on an assumed uniform fish density distribution of 10^{-3} fish of specific species and size per cubic meter of water. Thus, to calculate the Nominal Fish Kill we compute the $\int p \, dv$ where p is the calculated kill probability and multiply by the assumed uniform fish density, i.e.,

$$\text{Nominal Fish Kill} = 10^{-3} \int p \, dv \quad (4.3.1)$$

where v is the water volume in meters.

We now wish to calculate the Nominal Fish Kill for the four explosion test geometries described by Figures 4.2.1 and 4.2.2. To do this we approximate $\int p \, dv$ (Equation 4.3.1) by the volume of water enclosed by the 50%-kill contour.* Table 4.3.1 lists the calculated water volumes enclosed by the 50% and 10% kill contours for the four explosion geometries. The calculated volumes for the underwater explosions were used to estimate an average value of the volume ratio, 50%-to-10% kill, (= 33.4%) which we then used to estimate the 50% kill volume for the full scale air burst test (Figure 4.2.2).

The Nominal Fish Kill values calculated from these 50% kill volumes (Table 4.3.1, first column) are listed in Table 4.3.2.** The final column of Table 4.3.2 lists the Nominal Fish Kill per kilogram of explosive used. Thus, on a fish/kg basis the underwater shots are some 1000 times more effective in killing fish than the air burst test configurations.

*This approximation underestimates $\int p \, dv$. For the example worked out in Table 4.3.1 of Reference 1 (same set of calculations as used here for the 32 kg underwater explosion) this approximation results in a value for Nominal Fish Kill which is 89% of the value obtained thru the approximate integration described by the Table. For the underwater explosions, volumes enclosed by the contours were calculated by summing cone frustrum elements which approximated successive slices of the figure of revolution.

**Alternatively, we could describe the fish killing potential in terms of a Mean Kill Volume = $\int p \, dv$. (See Appendix A.) Thus, the Nominal Fish Kill is simply the Mean Kill Volume expressed in thousands of cubic meters of water.
Table 4.3.1. Water Volumes Enclosed by Kill Probability Contours
(Thousands of Cubic Meters)

<table>
<thead>
<tr>
<th>Kill Probability Contour</th>
<th>Ratio 50% Vol.</th>
<th>10% Vol.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50%</td>
<td>10%</td>
</tr>
<tr>
<td>0.57 kg Underwater</td>
<td>34</td>
<td>110</td>
</tr>
<tr>
<td>32 kg Underwater</td>
<td>1430</td>
<td>3960</td>
</tr>
<tr>
<td>450 kg Air Burst</td>
<td>31</td>
<td>-</td>
</tr>
<tr>
<td>29,000 kg Air Burst</td>
<td>258*</td>
<td>770</td>
</tr>
</tbody>
</table>

*Estimated value = 33\frac{1}{2}\% of 10% Kill Volume

Table 4.3.2. Estimated Nominal Fish Kill

Assumption: Uniform Fish Density = 10^{-3} Fish/(Meter)^3

<table>
<thead>
<tr>
<th>Nominal Fish Kill</th>
<th>Nominal Kill/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.57 kg Underwater</td>
<td>34</td>
</tr>
<tr>
<td>32 kg Underwater</td>
<td>1430</td>
</tr>
<tr>
<td>450 kg Air Burst</td>
<td>31</td>
</tr>
<tr>
<td>29,000 kg Air Burst</td>
<td>260</td>
</tr>
</tbody>
</table>
5. CONCLUSION

On a fish-killed/kg explosive basis a typical underwater explosion is some 1000 times more hazardous for killing fish than the two air burst test geometries considered.
APPENDIX A

MEAN KILL VOLUME

An alternative measure of the fish-killing potential of an explosion geometry is the Mean Kill Volume (or MKV) defined on the basis of an assumed uniform spatial distribution of fish. Let \(D \) be the assumed uniform spatial density for fish of a given species and size. Assuming \(D \), let \(N \) be the number of fish killed by a given explosion geometry. We then define the mean kill volume by

\[
\text{MKV} = \frac{N}{D}
\]

(A1)

Thus, the mean kill volume is the volume of water which multiplied by the assumed uniform fish density results in the number of fish killed by the explosion.

Since \(N \) is generally computed by

\[
N = \int p \times D \, dV
\]

(A2)

where \(p \) is the kill probability, we can also express the mean kill volume directly in terms of the kill probability

\[
\text{MKV} = \int p \, dV
\]

(A3)

In this way we can avoid referencing the fish density distribution which is generally unknown.

Given an approximately random distribution of fish the MKV is an appropriate parameter for comparing the fish-killing potential of explosion test configurations.*

*If one has specific knowledge of the fish density distribution, such as the presence of only bottom-feeding or surface-feeding fish then this additional knowledge should, of course, be used.

A-1/2
Commanding Officer
Naval Explosive Ordnance Disposal School
Indian Head, MD 20640
Attn: LCDR E. W. McConnell

Commander
David W. Taylor Naval Ship Research
and Development Center
Bethesda, MD 20034
Attn: Library, Code 5641

Commanding Officer
Naval Coastal Systems Laboratory
Panama City, FL 32401
Attn: Code 350
John A. Brasewell, Code 773
Everett L. Richards, Code 721

Officer in Charge
Civil Engineering Laboratory
Naval Construction Battalion Center
Port Hueneme, CA 93043
Attn: Code L70
Code L71
Code L43
Code L65

Commanding Officer
Naval Air Station
Patuxent River, MD 20670
Attn: A. L. Clark, Environmental Protection Coordinator
Public Works Department

Commander
Naval Sea Systems Command
Washington, D. C. 20362
Attn: SEA-033
SEA-0332
SEA-332B
SEA-09G32
SEA-03B

U. S. Army Engineer District
100 McAllister Street
San Francisco, CA 94102
Attn: Tom Crews, III, Environmental Branch

Edgewood Arsenal
Edgewood, MD 21010
Attn: David Kramer
Harold Sommer
Allen E. Hilsmeier
U. S. Army Engineer Division, Pacific Ocean
Environmental Section
Bldg. 230, Ft. Shafter
APO San Francisco 96558
Attn: Michael T. Lee, Biologist

Director
Waterways Experiment Station
P. O. Box 631
Vicksburg, MS 39180
Attn: Technical Library
J. N. Strange
Kim Davis
WESNE

ADTC/DLV
Eglin AFB, FL 32542
Attn: J. C. Cornette

National Marine Fisheries Service
Auke Bay Biological Laboratory
P. O. Box 155
Auke Bay, AK 99821
Attn: Theodore Merrell

National Marine Fisheries Service
Water Resources Division
P. O. Box 1668
Juneau, AK 99801
Attn: Dale R. Evans, Chief

National Marine Fisheries Service
Southwest Fisheries Center
P. O. Box 271
La Jolla, CA 92037

Department of Commerce
National Oceanic and Atmospheric Administration
Washington Science Center, Bldg. 5
6010 Executive Blvd.
Rockville, MD 20852
Attn: Donald P. Martineau, Deputy Associate Administrator for Marine Resources
CAFT Scott E. Drummond, Room 918
CDR John G. McMillan, USN
LTJG Richard A. Zachariasen, Room 805
Sidney T. Smith, Room 100
Milton S. Arnostam
Emmett S. Hill, Jr.
Fletcher F. Echard, AD1X3
Department of Commerce
Biological Laboratory
Milford, CT 06460

Department of the Interior
1107 NE 45th Street
Suite 110
Seattle, WA 98105
 Attn: Karen Bachman
 Mark L. Holmes

Department of the Interior
Bureau of Sports Fisheries and Wildlife
Interior Building
Washington, D. C. 20240
 Attn: John S. Gottschalk, Director

Bureau of Commercial Fisheries
Interior Building
Washington, D. C. 20240
 Attn: Philip M. Roedel, Director

State of Maryland
Fish and Wildlife Administration
Annapolis, MD 21404
 Attn: Charles Frisbie
 Barbara Holden

State of North Carolina
Department of Natural and Economic Resources
Division of Marine Fisheries
Box 769
Morehead City, NC 28557
 Attn: Willard Lane, Artificial Reef Program
 Jim Tyler, Artificial Reef Program

South Carolina Marine Resources Division
2024 Maybank Highway
Charleston, SC 29412
 Attn: Michael D. McKenzie

Trust Territory Environmental Protection Board
P. O. Box 215
Yap, W.C.I. 96943
 Attn: M. Falanruw, Staff Ecologist

Howard J. King, P-2
580 Taylor Avenue
Annapolis, MD 21401
State of Alaska
Department of Fish and Game
333 Raspberry Road
Anchorage, AK 99502
 Attn: Lance L. Trasky, Fisheries Research Biologist

Deputy Commissioner
Alaska Department of Fish and Game
Support Building
Juneau, AK 99801
 Attn: Joseph R. Blum

State of Alaska
Department of Fish and Game
Habitat Section
333 Raspberry Road
Anchorage, AK 99501

Department of Fish and Game
Wildlife Protection Branch
1416 Ninth Street
Sacramento, CA 95814

State of California
Marine Resources Division
350 Golden Shore
Long Beach, CA 90802
 Attn: Doyle Gates, Regional Manager

State of Florida
Department of Natural Resources
Larson Building
Tallahassee, FL 32304

State of Louisiana
Wildlife and Fisheries Commission
P. O. Box 44095, Capital Station
Baton Rough, LA 70804
 Attn: Fred Dunham

Virginia Institute of Marine Science
Gloucester Point, VA 23062
 Attn: William J. Hargis, Director

University of Washington
College of Fisheries
Fisheries Research Institute
Seattle, WA 98195
 Attn: Dave R. Gibbons
 Charles Simenstad, Biologist
Director
Woods Hole Oceanographic Institution
Woods Hole, MA 02543
 Attn: Bostwick Ketchum
 Gifford C. Ewing
 Earl E. Hays
 Library

Director
Scripps Institution of Oceanography
La Jolla, CA 92037
 Attn: Fred Spiess

School of Oceanography
Oregon State University
Corvallis, OR 97331
 Attn: A. G. Carey, Jr.
 Librarian

Chesapeake Bay Institute
The Johns Hopkins University
Baltimore, MD 21218

Chesapeake Biological Laboratory
P. O. Box 38
Solomons, MD 20688
 Attn: T. S. Y. Koo
 Joseph A. Mihursky
 Martin L. Wiley
 John S. Wilson

Marine Physical Laboratory, SIO/UCSD
Bldg. 106, Naval Undersea Center
San Diego, CA 92106
 Attn: Charles B. Bishop

University of Hawaii at Manoa
Hawaii Institute of Marine Biology
P. O. Box 1346, Coconut Island
Kaneohe, HI 96744
 Attn: George H. Balazs, Jr., Marine Biologist

Department of Biology
Juniata College
Huntingdon, PA 16652
 Attn: Robert L. Fisher

Marine Resources Division
California State Fisheries Lab
350 South Magnolia
Long Beach, CA 90802
 Attn: Robert Kanlen
Argus Pressure Grouting Services, Inc.
22000 Ryan Road
Warren, MI 48091
Attn: Albin Gronowicz, President

Hydronautics
7210 Pindell School Road
Laurel, MD 20910
Attn: Norman Shapira

Robert E. Eckels & Associates
Consulting Engineers
2101 Youngfield
Golden, CO 80401

Woodward Clyde Consultant
Box 1149
Orange, CA 92668
Attn: Jack Kiker

B.O.C. Sub Ocean Services
1022 Wirt Road
Houston, TX 77055
Attn: Thomas L. Kirchberg

Lovelace Biomedical & Environmental Research
Institute, Inc.
P. O. Box 5890
Albuquerque, NM 87115
Attn: Donald R. Richmond
E. Royce Fletcher
Robert K. Jones
John T. Yelverton

Meteorology Research, Inc.
464 West Woodbury Road
Altadena, CA 91001
Attn: George Woffinder

Mount Auburn Research Associates, Inc.
385 Elliot Street
Newton, MA 02164
Attn: Sheldon L. Kahalas

Tetra Tech, Inc.
630 N. Rosemead Blvd.
Pasadena, CA 91107
Attn: Li-San Hwang

Explo Precision Engineering Corporation
Manager of Technical Services
Gretna, LA 70053
Attn: John J. Ridgeway
TO AID IN UPDATING THE DISTRIBUTION LIST FOR NAVAL SURFACE WEAPONS CENTER, WHITE OAK TECHNICAL REPORTS PLEASE COMPLETE THE FORM BELOW:

TO ALL HOLDERS OF NSWC/WOL/TR 77-90
by John F. Coertner, Code R-14
DO NOT RETURN THIS FORM IF ALL INFORMATION IS CURRENT

A. FACILITY NAME AND ADDRESS (OLD) (Show Zip Code)

NEW ADDRESS (Show Zip Code)

B. ATTENTION LINE ADDRESSES:

C.

☐ REMOVE THIS FACILITY FROM THE DISTRIBUTION LIST FOR TECHNICAL REPORTS ON THIS SUBJECT.

D.

NUMBER OF COPIES DESIRED ________________________________
ATTENTION: CODE R-T-4

WHITE OAK, SILVER SPRING, MARYLAND 20910
NAVAL SURFACE WEAPONS CENTER
COMMANDER

OFFICIAL BUSINESS

Penalty for private use, $500.

Department of the Navy

Postage and fees paid

U.S. MAIL

DoD 316

Department of the Navy